CTO: a Community-Based Clinical Trial Ontology and its Applications in PubChemRDF and SCAIView.

CEUR workshop proceedings Pub Date : 2020-09-01
Asiyah Yu Lin, Stephan Gebel, Qingliang Leon Li, Sumit Madan, Johannes Darms, Evan Bolton, Barry Smith, Martin Hofmann-Apitius, Yongqun Oliver He, Alpha Tom Kodamullil
{"title":"CTO: a Community-Based Clinical Trial Ontology and its Applications in PubChemRDF and SCAIView.","authors":"Asiyah Yu Lin, Stephan Gebel, Qingliang Leon Li, Sumit Madan, Johannes Darms, Evan Bolton, Barry Smith, Martin Hofmann-Apitius, Yongqun Oliver He, Alpha Tom Kodamullil","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Driven by the use cases of PubChemRDF and SCAIView, we have developed a first community-based clinical trial ontology (CTO) by following the OBO Foundry principles. CTO uses the Basic Formal Ontology (BFO) as the top level ontology and reuses many terms from existing ontologies. CTO has also defined many clinical trial-specific terms. The general CTO design pattern is based on the PICO framework together with two applications. First, the PubChemRDF use case demonstrates how a drug Gleevec is linked to multiple clinical trials investigating Gleevec's related chemical compounds. Second, the SCAIView text mining engine shows how the use of CTO terms in its search algorithm can identify publications referring to COVID-19-related clinical trials. Future opportunities and challenges are discussed.</p>","PeriodicalId":72554,"journal":{"name":"CEUR workshop proceedings","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9389640/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEUR workshop proceedings","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Driven by the use cases of PubChemRDF and SCAIView, we have developed a first community-based clinical trial ontology (CTO) by following the OBO Foundry principles. CTO uses the Basic Formal Ontology (BFO) as the top level ontology and reuses many terms from existing ontologies. CTO has also defined many clinical trial-specific terms. The general CTO design pattern is based on the PICO framework together with two applications. First, the PubChemRDF use case demonstrates how a drug Gleevec is linked to multiple clinical trials investigating Gleevec's related chemical compounds. Second, the SCAIView text mining engine shows how the use of CTO terms in its search algorithm can identify publications referring to COVID-19-related clinical trials. Future opportunities and challenges are discussed.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CTO:基于社区的临床试验本体及其在 PubChemRDF 和 SCAIView 中的应用。
在 PubChemRDF 和 SCAIView 用例的推动下,我们遵循 OBO Foundry 原则开发了首个基于社区的临床试验本体(CTO)。CTO 使用基本形式本体(BFO)作为顶层本体,并重用了现有本体中的许多术语。CTO 还定义了许多临床试验专用术语。一般的 CTO 设计模式基于 PICO 框架和两个应用程序。首先,PubChemRDF 用例展示了如何将药物格列卫与研究格列卫相关化合物的多项临床试验联系起来。其次,SCAIView 文本挖掘引擎展示了如何在其搜索算法中使用 CTO 术语来识别涉及 COVID-19 相关临床试验的出版物。此外还讨论了未来的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
A Privacy-Preserving Unsupervised Speaker Disentanglement Method for Depression Detection from Speech. Learning to Generate Context-Sensitive Backchannel Smiles for Embodied AI Agents with Applications in Mental Health Dialogues. Internet resources for foreign language education in primary school: challenges and opportunities YouTube as an open resource for foreign language learning: a case study of German Ontology-based representation and analysis of conditional vaccine immune responses using Omics data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1