Non-genetic resistance facilitates survival while hindering the evolution of drug resistance due to intraspecific competition.

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Physical biology Pub Date : 2022-09-08 DOI:10.1088/1478-3975/ac8c17
Joshua D Guthrie, Daniel A Charlebois
{"title":"Non-genetic resistance facilitates survival while hindering the evolution of drug resistance due to intraspecific competition.","authors":"Joshua D Guthrie,&nbsp;Daniel A Charlebois","doi":"10.1088/1478-3975/ac8c17","DOIUrl":null,"url":null,"abstract":"<p><p>Rising rates of resistance to antimicrobial drugs threaten the effective treatment of infections across the globe. Drug resistance has been established to emerge from non-genetic mechanisms as well as from genetic mechanisms. However, it is still unclear how non-genetic resistance affects the evolution of genetic drug resistance. We develop deterministic and stochastic population models that incorporate resource competition to quantitatively investigate the transition from non-genetic to genetic resistance during the exposure to static and cidal drugs. We find that non-genetic resistance facilitates the survival of cell populations during drug treatment while hindering the development of genetic resistance due to competition between the non-genetically and genetically resistant subpopulations. Non-genetic resistance in the presence of subpopulation competition increases the fixation times of drug resistance mutations, while increasing the probability of mutation before population extinction during cidal drug treatment. Intense intraspecific competition during drug treatment leads to extinction of susceptible and non-genetically resistant subpopulations. Alternating between drug and no drug conditions results in oscillatory population dynamics, increased resistance mutation fixation timescales, and reduced population survival. These findings advance our fundamental understanding of the evolution of resistance and may guide novel treatment strategies for patients with drug-resistant infections.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ac8c17","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Rising rates of resistance to antimicrobial drugs threaten the effective treatment of infections across the globe. Drug resistance has been established to emerge from non-genetic mechanisms as well as from genetic mechanisms. However, it is still unclear how non-genetic resistance affects the evolution of genetic drug resistance. We develop deterministic and stochastic population models that incorporate resource competition to quantitatively investigate the transition from non-genetic to genetic resistance during the exposure to static and cidal drugs. We find that non-genetic resistance facilitates the survival of cell populations during drug treatment while hindering the development of genetic resistance due to competition between the non-genetically and genetically resistant subpopulations. Non-genetic resistance in the presence of subpopulation competition increases the fixation times of drug resistance mutations, while increasing the probability of mutation before population extinction during cidal drug treatment. Intense intraspecific competition during drug treatment leads to extinction of susceptible and non-genetically resistant subpopulations. Alternating between drug and no drug conditions results in oscillatory population dynamics, increased resistance mutation fixation timescales, and reduced population survival. These findings advance our fundamental understanding of the evolution of resistance and may guide novel treatment strategies for patients with drug-resistant infections.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非遗传抗性促进了生存,同时由于种内竞争阻碍了耐药性的进化。
抗微生物药物耐药性的上升威胁到全球感染的有效治疗。已经确定耐药性既来自遗传机制,也来自非遗传机制。然而,目前尚不清楚非遗传耐药性如何影响遗传耐药性的演变。我们开发了包含资源竞争的确定性和随机种群模型,以定量研究暴露于静态和杀伤药物期间从非遗传抗性到遗传抗性的转变。我们发现,非遗传抗性促进了细胞群体在药物治疗期间的生存,同时由于非遗传和遗传抗性亚群体之间的竞争,阻碍了遗传抗性的发展。亚种群竞争下的非遗传抗性增加了耐药突变的固定次数,同时增加了灭杀药物治疗过程中种群灭绝前发生突变的概率。药物治疗过程中激烈的种内竞争导致易感和非遗传抗性亚群的灭绝。在药物和无药物条件之间交替导致振荡的种群动态,增加抗性突变固定时间尺度,并降低种群存活率。这些发现促进了我们对耐药性进化的基本理解,并可能指导耐药感染患者的新治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
期刊最新文献
A role of fear on diseased food web model with multiple functional response. Two fitness inference schemes compared using allele frequencies from 1,068,391 sequences sampled in the UK during the COVID-19 pandemic. Unraveling the role of exercise in cancer suppression: insights from a mathematical model. An exactly solvable model for RNA polymerase during the elongation stage. A theoretical framework for predicting the heterogeneous stiffness map of brain white matter tissue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1