Identifying Ability and Nonability Groups: Incorporating Response Times Using Mixture Modeling.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-12-01 Epub Date: 2022-01-20 DOI:10.1177/00131644211072833
Georgios Sideridis, Ioannis Tsaousis, Khaleel Al-Harbi
{"title":"Identifying Ability and Nonability Groups: Incorporating Response Times Using Mixture Modeling.","authors":"Georgios Sideridis, Ioannis Tsaousis, Khaleel Al-Harbi","doi":"10.1177/00131644211072833","DOIUrl":null,"url":null,"abstract":"<p><p>The goal of the present study was to address the analytical complexity of incorporating responses and response times through applying the Jeon and De Boeck mixture item response theory model in Mplus 8.7. Using both simulated and real data, we attempt to identify subgroups of responders that are rapid guessers or engage knowledge retrieval strategies. When applying the mixture model to a measure of contextual error in linguistics results pointed to the presence of a knowledge retrieval strategy. That is, a participant either knows the content (morphology, grammar rules) and can identify the error, or lacks the requisite knowledge and cannot benefit from spending more time on an item. In contrast, as item difficulty progressed, the high-ability group utilized the additional time to make informed guesses. The methodology is illustrated using annotated code in Mplus 8.7.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619323/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644211072833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

The goal of the present study was to address the analytical complexity of incorporating responses and response times through applying the Jeon and De Boeck mixture item response theory model in Mplus 8.7. Using both simulated and real data, we attempt to identify subgroups of responders that are rapid guessers or engage knowledge retrieval strategies. When applying the mixture model to a measure of contextual error in linguistics results pointed to the presence of a knowledge retrieval strategy. That is, a participant either knows the content (morphology, grammar rules) and can identify the error, or lacks the requisite knowledge and cannot benefit from spending more time on an item. In contrast, as item difficulty progressed, the high-ability group utilized the additional time to make informed guesses. The methodology is illustrated using annotated code in Mplus 8.7.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别能力和无能力组:结合使用混合建模的响应时间。
本研究的目的是通过应用Mplus 8.7中的Jeon和De Boeck混合项目反应理论模型来解决反应和反应时间相结合的分析复杂性。使用模拟和真实数据,我们试图确定快速猜测者或参与知识检索策略的应答者亚组。将混合模型应用于语言学中上下文错误的测量,结果指出了知识检索策略的存在。也就是说,参与者要么知道内容(词法、语法规则)并能识别错误,要么缺乏必要的知识,不能从花更多的时间在一个项目上获益。相比之下,随着项目难度的增加,高能力组利用额外的时间做出明智的猜测。使用Mplus 8.7中的带注释的代码说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1