Zhuo Li, Xiaomin Hou, Xuehua Liu, Linlin Ma, Jiewen Tan
{"title":"Hyperbaric Oxygen Therapy-Induced Molecular and Pathway Changes in a Rat Model of Spinal Cord Injury: A Proteomic Analysis.","authors":"Zhuo Li, Xiaomin Hou, Xuehua Liu, Linlin Ma, Jiewen Tan","doi":"10.1177/15593258221141579","DOIUrl":null,"url":null,"abstract":"<p><p>Hyperbaric Oxygen Therapy (HBOT) has definitive therapeutic effects on spinal cord injury (SCI), but its mechanism of action is still unclear. Here, we've conducted a systemic proteomic analysis to identify differentially expressed proteins (DEPs) between SCI rats and HBOT + SCI rats. The function clustering analysis showed that the top enriched pathways of DEPs include oxygen transport activity, oxygen binding, and regulation of T cell proliferation. The results of functional and signal pathway analyses indicated that metabolic pathways, thermogenesis, LXR/RXR activation, acute phase response signaling, and the intrinsic prothrombin pathway in the SCI + HBOT group was higher than SCI group.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d6/02/10.1177_15593258221141579.PMC9706077.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15593258221141579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Hyperbaric Oxygen Therapy (HBOT) has definitive therapeutic effects on spinal cord injury (SCI), but its mechanism of action is still unclear. Here, we've conducted a systemic proteomic analysis to identify differentially expressed proteins (DEPs) between SCI rats and HBOT + SCI rats. The function clustering analysis showed that the top enriched pathways of DEPs include oxygen transport activity, oxygen binding, and regulation of T cell proliferation. The results of functional and signal pathway analyses indicated that metabolic pathways, thermogenesis, LXR/RXR activation, acute phase response signaling, and the intrinsic prothrombin pathway in the SCI + HBOT group was higher than SCI group.