Mei-Ling Ting Lee, John Lawrence, Yiming Chen, G A Whitmore
{"title":"Accounting for delayed entry into observational studies and clinical trials: length-biased sampling and restricted mean survival time.","authors":"Mei-Ling Ting Lee, John Lawrence, Yiming Chen, G A Whitmore","doi":"10.1007/s10985-022-09562-8","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals in many observational studies and clinical trials for chronic diseases are enrolled well after onset or diagnosis of their disease. Times to events of interest after enrollment are therefore residual or left-truncated event times. Individuals entering the studies have disease that has advanced to varying extents. Moreover, enrollment usually entails probability sampling of the study population. Finally, event times over a short to moderate time horizon are often of interest in these investigations, rather than more speculative and remote happenings that lie beyond the study period. This research report looks at the issue of delayed entry into these kinds of studies and trials. Time to event for an individual is modelled as a first hitting time of an event threshold by a latent disease process, which is taken to be a Wiener process. It is emphasized that recruitment into these studies often involves length-biased sampling. The requisite mathematics for this kind of sampling and delayed entry are presented, including explicit formulas needed for estimation and inference. Restricted mean survival time (RMST) is taken as the clinically relevant outcome measure. Exact parametric formulas for this measure are derived and presented. The results are extended to settings that involve study covariates using threshold regression methods. Methods adapted for clinical trials are presented. An extensive case illustration for a clinical trial setting is then presented to demonstrate the methods, the interpretation of results, and the harvesting of useful insights. The closing discussion covers a number of important issues and concepts.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09562-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
Individuals in many observational studies and clinical trials for chronic diseases are enrolled well after onset or diagnosis of their disease. Times to events of interest after enrollment are therefore residual or left-truncated event times. Individuals entering the studies have disease that has advanced to varying extents. Moreover, enrollment usually entails probability sampling of the study population. Finally, event times over a short to moderate time horizon are often of interest in these investigations, rather than more speculative and remote happenings that lie beyond the study period. This research report looks at the issue of delayed entry into these kinds of studies and trials. Time to event for an individual is modelled as a first hitting time of an event threshold by a latent disease process, which is taken to be a Wiener process. It is emphasized that recruitment into these studies often involves length-biased sampling. The requisite mathematics for this kind of sampling and delayed entry are presented, including explicit formulas needed for estimation and inference. Restricted mean survival time (RMST) is taken as the clinically relevant outcome measure. Exact parametric formulas for this measure are derived and presented. The results are extended to settings that involve study covariates using threshold regression methods. Methods adapted for clinical trials are presented. An extensive case illustration for a clinical trial setting is then presented to demonstrate the methods, the interpretation of results, and the harvesting of useful insights. The closing discussion covers a number of important issues and concepts.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.