[Acetylation, methylation, and ubiquitination of proteins in experimental ischemic stroke in mice: a bioinformatics analysis].

Q3 Biochemistry, Genetics and Molecular Biology Biomeditsinskaya khimiya Pub Date : 2022-11-01 DOI:10.18097/PBMC20226805390
V S Skvortsov, Y O Ivanova, A I Voronina
{"title":"[Acetylation, methylation, and ubiquitination of proteins in experimental ischemic stroke in mice: a bioinformatics analysis].","authors":"V S Skvortsov,&nbsp;Y O Ivanova,&nbsp;A I Voronina","doi":"10.18097/PBMC20226805390","DOIUrl":null,"url":null,"abstract":"<p><p>The experimental results available in the ProteomeXchange database (accession code PXD016538) (Simats et al. (2020) Molecular and Cellular Proteomics, 19(12), 1921-1936) obtained using a comprehensive multi-omics approach were analyzed in mouse blood to identify potential biomarkers of ischemic stroke. Acetylation, methylation, and ubiquitination were considered as post-translational modifications. The analysis of the significance of changes in the level of protein modification was evaluated for ischemic tissue in comparison with tissue undamaged by stroke and control taken from mice after sham operation. At the level of statistically significant differences according to the Mann-Whitney test (p < 0.05), 2 proteins were found (Q02248 and Q8BL66); for additional 7 proteins, the differences were at the level of a statistical trend (p < 0.1). For 7 of 9 selected proteins there are reports in the literature, for their association with cerebral ischemia.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"68 5","pages":"390-397"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20226805390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The experimental results available in the ProteomeXchange database (accession code PXD016538) (Simats et al. (2020) Molecular and Cellular Proteomics, 19(12), 1921-1936) obtained using a comprehensive multi-omics approach were analyzed in mouse blood to identify potential biomarkers of ischemic stroke. Acetylation, methylation, and ubiquitination were considered as post-translational modifications. The analysis of the significance of changes in the level of protein modification was evaluated for ischemic tissue in comparison with tissue undamaged by stroke and control taken from mice after sham operation. At the level of statistically significant differences according to the Mann-Whitney test (p < 0.05), 2 proteins were found (Q02248 and Q8BL66); for additional 7 proteins, the differences were at the level of a statistical trend (p < 0.1). For 7 of 9 selected proteins there are reports in the literature, for their association with cerebral ischemia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
[乙酰化,甲基化和泛素化的蛋白质在实验性缺血性中风小鼠:生物信息学分析]。
使用综合多组学方法在小鼠血液中分析获得的实验结果(加入代码PXD016538) (Simats et al. (2020) Molecular and Cellular Proteomics, 19(12), 1921-1936),以确定缺血性中风的潜在生物标志物。乙酰化、甲基化和泛素化被认为是翻译后修饰。对比假手术后小鼠脑缺血组织与脑卒中未损伤组织及对照组,分析缺血组织蛋白修饰水平变化的意义。在Mann-Whitney检验差异有统计学意义的水平上(p < 0.05),发现2个蛋白(Q02248和Q8BL66);另外7种蛋白差异有统计学意义(p < 0.1)。在9种选定的蛋白质中,有7种与脑缺血有关,在文献中有报道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomeditsinskaya khimiya
Biomeditsinskaya khimiya Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍: The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).
期刊最新文献
Fundamentals of protein chemistry at the Institute of Biomedical Chemistry. In silico and in cellulo approaches for functional annotation of human protein splice variants. Nanowire-based biosensors for solving biomedical problems. Proteome of plasma extracellular vesicles as a source of colorectal cancer biomarkers. Registration of activity of a single molecule of horseradish peroxidase using a detector based on a solid-state nanopore.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1