Fabrication and In Vitro Evaluation of Febuxostat Tablet for Obtaining Biphasic Drug Release Profile.

Dipika Chavda, Deepika Joshi, Vaishali Thakkar, Tejal Gandhi
{"title":"Fabrication and In Vitro Evaluation of Febuxostat Tablet for Obtaining Biphasic Drug Release Profile.","authors":"Dipika Chavda, Deepika Joshi, Vaishali Thakkar, Tejal Gandhi","doi":"10.2174/2667387817666221116100127","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim and objective: </strong>The primary aim of the present investigation was to adopt the concept of quality by design (QbD) for developing Febuxostat matrix tablets containing a novel combination of polyethylene oxide (PEO), pre-gelatinized starch (PGS) and lactose for obtaining biphasic drug release.</p><p><strong>Experimental: </strong>Febuxostat-containing matrix tablets were prepared by direct compression using 32 full factorial designs. The tablets were prepared with varying amounts of PEO WSR 301 to PGS and lactose to obtain the desired release pattern. The chosen responses were cumulative % drug released at 1, 6 and 12 hours. The evaluation of tablets was done for pre and post-compressional parameters. Compared with the marketed tablet, the optimized formulations were selected based on in vitro drug release. Dose dumping was checked in the dissolution medium containing up to 40% alcohol.</p><p><strong>Results and discussion: </strong>The results of the dissolution study indicated that the batch containing a 1:1 ratio of PEO WSR 301 and PGS (15 mg each) and 20 mg of Lactose showed fast initial drug release to imitate the pharmacological action followed by sustained drug release effect. The use of Lactose facilitated immediate drug release, while PEO WSR 301 and PGS exhibited the opposite effect on cumulative drug release. The results of the 3<sup>2</sup> Factorial design revealed that the concentration of Lactose is a critical parameter. Dose dumping was not observed in the alcoholic dissolution medium. Kinetic equations were fitted to the dissolution data after 1 hour of the dissolution study.</p><p><strong>Conclusion: </strong>The type (soluble or swellable) and the concentration of excipients (low or high) dictate the tablets' drug release. The study's outcome revealed that the most critical material attribute is the amount of lactose. The novel combination of PEO, PGS and lactose can bypass existing patents and give more industrial applicability.</p>","PeriodicalId":20955,"journal":{"name":"Recent advances in drug delivery and formulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent advances in drug delivery and formulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2667387817666221116100127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aim and objective: The primary aim of the present investigation was to adopt the concept of quality by design (QbD) for developing Febuxostat matrix tablets containing a novel combination of polyethylene oxide (PEO), pre-gelatinized starch (PGS) and lactose for obtaining biphasic drug release.

Experimental: Febuxostat-containing matrix tablets were prepared by direct compression using 32 full factorial designs. The tablets were prepared with varying amounts of PEO WSR 301 to PGS and lactose to obtain the desired release pattern. The chosen responses were cumulative % drug released at 1, 6 and 12 hours. The evaluation of tablets was done for pre and post-compressional parameters. Compared with the marketed tablet, the optimized formulations were selected based on in vitro drug release. Dose dumping was checked in the dissolution medium containing up to 40% alcohol.

Results and discussion: The results of the dissolution study indicated that the batch containing a 1:1 ratio of PEO WSR 301 and PGS (15 mg each) and 20 mg of Lactose showed fast initial drug release to imitate the pharmacological action followed by sustained drug release effect. The use of Lactose facilitated immediate drug release, while PEO WSR 301 and PGS exhibited the opposite effect on cumulative drug release. The results of the 32 Factorial design revealed that the concentration of Lactose is a critical parameter. Dose dumping was not observed in the alcoholic dissolution medium. Kinetic equations were fitted to the dissolution data after 1 hour of the dissolution study.

Conclusion: The type (soluble or swellable) and the concentration of excipients (low or high) dictate the tablets' drug release. The study's outcome revealed that the most critical material attribute is the amount of lactose. The novel combination of PEO, PGS and lactose can bypass existing patents and give more industrial applicability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制作非布索坦片剂并对其进行体外评估,以获得双相药物释放谱。
目的和目标 本研究的主要目的是采用质量源于设计(QbD)的理念,开发含有聚氧化乙烯(PEO)、预胶化淀粉(PGS)和乳糖新型组合的非布司他基质片剂,以获得双相释药。实验工作 采用 32 种全因子设计直接压片法制备含非布司他(Febuxostat)的基质片剂。制备片剂时,PEO WSR 301、PGS 和乳糖的用量各不相同,以获得所需的释放模式。所选反应为 1、6 和 12 小时的累积药物释放率。对片剂进行了压缩前和压缩后参数的评估。与市场上销售的片剂相比,根据体外药物释放情况选择了优化配方。在酒精含量高达 40% 的溶解介质中检查了剂量倾倒情况。结果与讨论 溶出度研究结果表明,含有 1:1 比例的 PEO WSR 301 和 PGS(各 15 毫克)以及 20 毫克乳糖的批次显示出快速的初始药物释放,以模仿药理作用,随后显示出持续的药物释放效果。乳糖的使用促进了药物的即时释放,而 PEO WSR 301 和 PGS 对药物的累积释放则表现出相反的效果。32 因式设计的结果表明,乳糖的浓度是一个关键参数。在酒精溶解介质中未观察到剂量倾倒现象。溶解研究 1 小时后的溶解数据符合动力学方程。结论 辅料的类型(可溶或可胀)和浓度(低或高)决定了片剂的药物释放。研究结果表明,最关键的材料属性是乳糖的含量。PEO、PGS 和乳糖的新型组合可以绕过现有专利,使其更适用于工业领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential Current Advancements on Oral Protein and Peptide Drug Delivery Approaches to Bioavailability: Extensive Review on Patents Optimizing Microfluidic Channel Design with High-Performance Materials for Safe Neonatal Drug Delivery Patent Selection: Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1