Jelena Tadic, Julia Ring, Andrea Jerkovic, Selena Ristic, Marta Maglione, Jörn Dengjel, Stephan J Sigrist, Tobias Eisenberg
{"title":"A pathological role of the Hsp40 protein Ydj1/DnaJA1 in models of Alzheimer's disease.","authors":"Jelena Tadic, Julia Ring, Andrea Jerkovic, Selena Ristic, Marta Maglione, Jörn Dengjel, Stephan J Sigrist, Tobias Eisenberg","doi":"10.15698/cst2022.05.267","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common form of dementia with millions of people affected worldwide. Pathophysiological manifestations of AD include the extracellular accumulation of amyloid beta (Abeta) pep-tides, products of the proteolytic cleavage of the amy-loid precursor protein APP. Increasing evidence sug-gests that Abeta peptides also accumulate intracellular-ly, triggering neurotoxic events such as mitochondrial dysfunction. However, the molecular factors driving formation and toxicity of intracellular Abeta are poorly understood. In our recent study [EMBO Mol Med 2022 - e13952], we used different eukaryotic model systems to identify such factors. Based on a genetic screen in yeast and subsequent molecular analyses, we found that both the yeast chaperone Ydj1 and its human ortholog DnaJA1 physically interact with Abeta, facili-tate the aggregation of Abeta peptides into small oli-gomers and promote their translocation to mitochon-dria. Deletion or downregulation of this chaperone pro-tected from Abeta-mediated toxicity in yeast and Dro-sophila AD models, respectively. Most importantly, the identified chaperone is found to be dysregulated in post-mortem human samples of AD patients. Here, we aim to outline our key findings, highlighting pathological functions of a heat shock protein (Hsp) family member, which are generally considered protective rather than toxic during neurodegeneration. Our results thus chal-lenge the concept of developing generalized chaperone activation-based therapies and call for carefully consid-ering also maladaptive functions of specific heat shock proteins.</p>","PeriodicalId":36371,"journal":{"name":"Cell Stress","volume":"6 5","pages":"61-64"},"PeriodicalIF":4.1000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9662027/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15698/cst2022.05.267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Alzheimer's disease (AD) is the most common form of dementia with millions of people affected worldwide. Pathophysiological manifestations of AD include the extracellular accumulation of amyloid beta (Abeta) pep-tides, products of the proteolytic cleavage of the amy-loid precursor protein APP. Increasing evidence sug-gests that Abeta peptides also accumulate intracellular-ly, triggering neurotoxic events such as mitochondrial dysfunction. However, the molecular factors driving formation and toxicity of intracellular Abeta are poorly understood. In our recent study [EMBO Mol Med 2022 - e13952], we used different eukaryotic model systems to identify such factors. Based on a genetic screen in yeast and subsequent molecular analyses, we found that both the yeast chaperone Ydj1 and its human ortholog DnaJA1 physically interact with Abeta, facili-tate the aggregation of Abeta peptides into small oli-gomers and promote their translocation to mitochon-dria. Deletion or downregulation of this chaperone pro-tected from Abeta-mediated toxicity in yeast and Dro-sophila AD models, respectively. Most importantly, the identified chaperone is found to be dysregulated in post-mortem human samples of AD patients. Here, we aim to outline our key findings, highlighting pathological functions of a heat shock protein (Hsp) family member, which are generally considered protective rather than toxic during neurodegeneration. Our results thus chal-lenge the concept of developing generalized chaperone activation-based therapies and call for carefully consid-ering also maladaptive functions of specific heat shock proteins.
Cell StressBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
13.50
自引率
0.00%
发文量
21
审稿时长
15 weeks
期刊介绍:
Cell Stress is an open-access, peer-reviewed journal that is dedicated to publishing highly relevant research in the field of cellular pathology. The journal focuses on advancing our understanding of the molecular, mechanistic, phenotypic, and other critical aspects that underpin cellular dysfunction and disease. It specifically aims to foster cell biology research that is applicable to a range of significant human diseases, including neurodegenerative disorders, myopathies, mitochondriopathies, infectious diseases, cancer, and pathological aging.
The scope of Cell Stress is broad, welcoming submissions that represent a spectrum of research from fundamental to translational and clinical studies. The journal is a valuable resource for scientists, educators, and policymakers worldwide, as well as for any individual with an interest in cellular pathology. It serves as a platform for the dissemination of research findings that are instrumental in the investigation, classification, diagnosis, and therapeutic management of major diseases. By being open-access, Cell Stress ensures that its content is freely available to a global audience, thereby promoting international scientific collaboration and accelerating the exchange of knowledge within the research community.