The Standardized S-X 2 Statistic for Assessing Item Fit.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2023-01-01 Epub Date: 2022-09-17 DOI:10.1177/01466216221108077
Zhuangzhuang Han, Sandip Sinharay, Matthew S Johnson, Xiang Liu
{"title":"The Standardized S-<i>X</i> <sup>2</sup> Statistic for Assessing Item Fit.","authors":"Zhuangzhuang Han, Sandip Sinharay, Matthew S Johnson, Xiang Liu","doi":"10.1177/01466216221108077","DOIUrl":null,"url":null,"abstract":"<p><p>The S-<i>X</i> <sup>2</sup> statistic (Orlando & Thissen, 2000) is popular among researchers and practitioners who are interested in the assessment of item fit. However, the statistic suffers from the Chernoff-Lehmann problem (Chernoff & Lehmann, 1954) and hence does not have a known asymptotic null distribution. This paper suggests a modified version of the S-<i>X</i> <sup>2</sup> statistic that is based on the modified Rao-Robson <i>χ</i> <sup>2</sup> statistic (Rao & Robson, 1974). A simulation study and a real data analyses demonstrate that the use of the modified statistic instead of the S-<i>X</i> <sup>2</sup> statistic would lead to fewer items being flagged for misfit.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679924/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221108077","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The S-X 2 statistic (Orlando & Thissen, 2000) is popular among researchers and practitioners who are interested in the assessment of item fit. However, the statistic suffers from the Chernoff-Lehmann problem (Chernoff & Lehmann, 1954) and hence does not have a known asymptotic null distribution. This paper suggests a modified version of the S-X 2 statistic that is based on the modified Rao-Robson χ 2 statistic (Rao & Robson, 1974). A simulation study and a real data analyses demonstrate that the use of the modified statistic instead of the S-X 2 statistic would lead to fewer items being flagged for misfit.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于评估项目契合度的标准化 S-X 2 统计量。
S-X 2 统计量(Orlando & Thissen,2000 年)深受对项目拟合度评估感兴趣的研究人员和从业人员的欢迎。然而,该统计量存在 Chernoff-Lehmann 问题(Chernoff & Lehmann, 1954),因此没有已知的渐近零分布。本文提出了一种基于修正的 Rao-Robson χ 2 统计量(Rao & Robson,1974 年)的修正版 S-X 2 统计量。一项模拟研究和一项真实数据分析表明,使用修正统计量而不是 S-X 2 统计量将会导致更少的项目被标记为不匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1