autoRasch: An R Package to Do Semi-Automated Rasch Analysis.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2023-01-01 Epub Date: 2022-10-10 DOI:10.1177/01466216221125178
Feri Wijayanto, Ioan Gabriel Bucur, Perry Groot, Tom Heskes
{"title":"autoRasch: An R Package to Do Semi-Automated Rasch Analysis.","authors":"Feri Wijayanto,&nbsp;Ioan Gabriel Bucur,&nbsp;Perry Groot,&nbsp;Tom Heskes","doi":"10.1177/01466216221125178","DOIUrl":null,"url":null,"abstract":"<p><p>The R package autoRasch has been developed to perform a Rasch analysis in a (semi-)automated way. The automated part of the analysis is achieved by optimizing the so-called <i>in-plus-out-of-questionnaire log-likelihood</i> (IPOQ-LL) or IPOQ-LL-DIF when differential item functioning (DIF) is included. These criteria measure the quality of fit on a pre-collected survey, depending on which items are included in the final instrument. To compute these criteria, autoRasch fits the generalized partial credit model (GPCM) or the generalized partial credit model with differential item functioning (GPCM-DIF) using penalized joint maximum likelihood estimation (PJMLE). The package further allows the user to reevaluate the output of the automated method and use it as a basis for performing a manual Rasch analysis and provides standard statistics of Rasch analyses (e.g., outfit, infit, person separation reliability, and residual correlation) to support the model reevaluation.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":"47 1","pages":"83-85"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9679921/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221125178","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The R package autoRasch has been developed to perform a Rasch analysis in a (semi-)automated way. The automated part of the analysis is achieved by optimizing the so-called in-plus-out-of-questionnaire log-likelihood (IPOQ-LL) or IPOQ-LL-DIF when differential item functioning (DIF) is included. These criteria measure the quality of fit on a pre-collected survey, depending on which items are included in the final instrument. To compute these criteria, autoRasch fits the generalized partial credit model (GPCM) or the generalized partial credit model with differential item functioning (GPCM-DIF) using penalized joint maximum likelihood estimation (PJMLE). The package further allows the user to reevaluate the output of the automated method and use it as a basis for performing a manual Rasch analysis and provides standard statistics of Rasch analyses (e.g., outfit, infit, person separation reliability, and residual correlation) to support the model reevaluation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
autoRasch:一个R包来做半自动的Rasch分析。
R包autoRasch已经被开发出来以一种(半)自动化的方式执行Rasch分析。分析的自动化部分是通过优化所谓的问卷内加外对数似然(IPOQ-LL)或包含差异项目功能(DIF)的IPOQ-LL-DIF来实现的。这些标准根据最终工具中包含的项目来衡量预先收集的调查的匹配质量。为了计算这些准则,autoRasch使用惩罚联合最大似然估计(PJMLE)拟合广义部分信用模型(GPCM)或带微分项目函数的广义部分信用模型(GPCM- dif)。该软件包进一步允许用户重新评估自动化方法的输出,并将其用作执行手动Rasch分析的基础,并提供Rasch分析的标准统计数据(例如,装备,infit,人员分离可靠性和残差相关性),以支持模型重新评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1