Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY Drug Delivery Pub Date : 2022-12-01 DOI:10.1080/10717544.2022.2092237
Ajmal Zarinwall, Viktor Maurer, Jennifer Pierick, Victor Marcus Oldhues, Julian Cedric Porsiel, Jan Henrik Finke, Georg Garnweitner
{"title":"Amorphization and modified release of ibuprofen by post-synthetic and solvent-free loading into tailored silica aerogels.","authors":"Ajmal Zarinwall,&nbsp;Viktor Maurer,&nbsp;Jennifer Pierick,&nbsp;Victor Marcus Oldhues,&nbsp;Julian Cedric Porsiel,&nbsp;Jan Henrik Finke,&nbsp;Georg Garnweitner","doi":"10.1080/10717544.2022.2092237","DOIUrl":null,"url":null,"abstract":"<p><p>Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9291651/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2022.2092237","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3

Abstract

Promising active pharmaceutical ingredients (APIs) often exhibit poor aqueous solubility and thus a low bioavailability that substantially limits their pharmaceutical application. Hence, efficient formulations are required for an effective translation into highly efficient drug products. One strategy is the preservation of an amorphous state of the API within a carrier matrix, which leads to enhanced dissolution. In this work, mesoporous silica aerogels (SA) were utilized as a carrier matrix for the amorphization of the poorly water-soluble model drug ibuprofen. Loading of tailored SA was performed post-synthetically and solvent-free, either by co-milling or via the melting method. Thorough analyses of these processes demonstrated the influence of macrostructural changes during the drying and grinding process on the microstructural properties of the SA. Furthermore, interfacial SA-drug interaction properties were selectively tuned by attaching terminal hydrophilic amino- or hydrophobic methyl groups to the surface of the gel. We demonstrate that not only the chemical surface properties of the SA, but also formulation-related parameters, such as the carrier-to-drug ratio, as well as process-related parameters, such as the drug loading method, decisively influence the ibuprofen adsorption efficiency. In addition, the drug-loaded SA formulations exhibited a remarkable physical stability over a period of 6 months. Furthermore, the release behavior is shown to change considerably with different surface properties of the SA matrix. Hence, the reported results demonstrate that utilizing specifically processed and modified SA offers a compelling technique for enhancement of the bioavailability of poorly-water soluble APIs and a versatile adjustment of their release profile.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
布洛芬的非晶化和改性释放后合成和无溶剂负载到定制的二氧化硅气凝胶。
有前途的活性药物成分(api)通常表现出较差的水溶性,因此生物利用度低,这大大限制了它们的制药应用。因此,需要有效的配方来有效地转化为高效的药物产品。一种策略是保持原料药在载体基质中的无定形状态,从而增强溶解。在这项工作中,介孔二氧化硅气凝胶(SA)被用作低水溶性模型药物布洛芬的非晶化载体基质。通过共磨或熔融方法,在合成后无溶剂地装载定制的SA。对这些过程的深入分析表明,干燥和研磨过程中的宏观结构变化对SA的微观组织性能有影响。此外,通过在凝胶表面附加末端亲水氨基或疏水甲基,可以选择性地调整界面sa -药物相互作用的性质。我们发现,除了SA的表面化学性质外,与配方相关的参数(如载药比)以及与工艺相关的参数(如载药方式)都对布洛芬的吸附效率有决定性的影响。此外,载药SA制剂在6个月的时间内表现出显著的物理稳定性。此外,释放行为随着SA基体表面性质的不同而有很大的变化。因此,报告的结果表明,利用特异性处理和修饰的SA提供了一种令人信服的技术,可以提高难水溶性原料药的生物利用度,并可以全面调整其释放特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
期刊最新文献
Statement of Retraction. Statement of Retraction. Retraction. Statement of retraction. Advances in the use of local anesthetic extended-release systems in pain management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1