Hanif Ullah , Safia Arbab , Ka Li , Muhammad Inayat Ullah Khan , Abdul Qadeer , Nehaz Muhammad
{"title":"Schistosomiasis related circulating cell-free DNA: A useful biomarker in diagnostics","authors":"Hanif Ullah , Safia Arbab , Ka Li , Muhammad Inayat Ullah Khan , Abdul Qadeer , Nehaz Muhammad","doi":"10.1016/j.molbiopara.2022.111495","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Schistosoma</em></span><span> is a genus of trematodes causing schistosomiasis, a major neglected tropical disease infecting more than 240 million people and with 700 million people at the risk of infection in the tropical and subtropical regions of the world, especially low-income countries. For the elimination of the disease, accurate diagnostic tools are needed. Besides allowing early treatment, early detection prevents environmental contamination and in turn ensures safe water sources in the endemic areas. Cell-free DNA (cfDNA) biomarker detection is a relatively new tool, used for the diagnosis of schistosomiasis in the early stages of infection from non-invasive clinical or experimental samples. cfDNA can be detected in </span><em>Schistosoma</em> infected host body fluids such as urine, serum, saliva and tissues, mainly in blood offering significant benefits for accurate diagnosis. In the current review, we described different characteristics of cfDNA, evidencing and supporting its potential uses in <em>Schistosoma</em> diagnosis and the improvement of treatment effectiveness.</p></div>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166685122000494","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Schistosoma is a genus of trematodes causing schistosomiasis, a major neglected tropical disease infecting more than 240 million people and with 700 million people at the risk of infection in the tropical and subtropical regions of the world, especially low-income countries. For the elimination of the disease, accurate diagnostic tools are needed. Besides allowing early treatment, early detection prevents environmental contamination and in turn ensures safe water sources in the endemic areas. Cell-free DNA (cfDNA) biomarker detection is a relatively new tool, used for the diagnosis of schistosomiasis in the early stages of infection from non-invasive clinical or experimental samples. cfDNA can be detected in Schistosoma infected host body fluids such as urine, serum, saliva and tissues, mainly in blood offering significant benefits for accurate diagnosis. In the current review, we described different characteristics of cfDNA, evidencing and supporting its potential uses in Schistosoma diagnosis and the improvement of treatment effectiveness.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.