Delta opioid receptors in Nav1.8 expressing peripheral neurons partially regulate the effect of delta agonist in models of migraine and opioid-induced hyperalgesia

Q2 Medicine Neurobiology of Pain Pub Date : 2022-08-01 DOI:10.1016/j.ynpai.2022.100099
Zachariah Bertels, Isaac J. Dripps, Pal Shah, Laura S. Moye, Alycia F. Tipton, Kendra Siegersma, Amynah A. Pradhan
{"title":"Delta opioid receptors in Nav1.8 expressing peripheral neurons partially regulate the effect of delta agonist in models of migraine and opioid-induced hyperalgesia","authors":"Zachariah Bertels,&nbsp;Isaac J. Dripps,&nbsp;Pal Shah,&nbsp;Laura S. Moye,&nbsp;Alycia F. Tipton,&nbsp;Kendra Siegersma,&nbsp;Amynah A. Pradhan","doi":"10.1016/j.ynpai.2022.100099","DOIUrl":null,"url":null,"abstract":"<div><p>Migraine is one of the most common pain disorders and causes disability in millions of people every year. Delta opioid receptors (DOR) have been identified as a novel therapeutic target for migraine and other headache disorders. DORs are present in both peripheral and central regions and it is unclear which receptor populations regulate migraine-associated effects. The aim of this study was to determine if DOR expressed in peripheral nociceptors regulates headache associated endpoints and the effect of delta agonists within these mouse models. We used a conditional knockout, in which DOR was selectively deleted from Nav1.8 expressing cells. Nav1.8-DOR mice and loxP control littermates were tested in models of chronic migraine-associated allodynia, opioid-induced hyperalgesia, migraine-associated negative affect, and aura. Nav1.8-DOR and loxP mice had comparable effect sizes in all of these models. The anti-allodynic effect of the DOR agonist, SNC80, was slightly diminished in the nitroglycerin model of migraine. Intriguingly, in the OIH model the peripheral effects of SNC80 were completely lost in Nav1.8-DOR mice while the cephalic effects remained intact. Regardless of genotype, SNC80 continued to inhibit conditioned place aversion associated with nitroglycerin and decreased cortical spreading depression events associated with migraine aura. These results suggest that DOR in Nav1.8-expressing nociceptors do not critically regulate the anti-migraine effects of delta agonist; and that brain-penetrant delta agonists would be a more effective drug development strategy.</p></div>","PeriodicalId":52177,"journal":{"name":"Neurobiology of Pain","volume":"12 ","pages":"Article 100099"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/61/22/main.PMC9289726.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Pain","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452073X22000162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 3

Abstract

Migraine is one of the most common pain disorders and causes disability in millions of people every year. Delta opioid receptors (DOR) have been identified as a novel therapeutic target for migraine and other headache disorders. DORs are present in both peripheral and central regions and it is unclear which receptor populations regulate migraine-associated effects. The aim of this study was to determine if DOR expressed in peripheral nociceptors regulates headache associated endpoints and the effect of delta agonists within these mouse models. We used a conditional knockout, in which DOR was selectively deleted from Nav1.8 expressing cells. Nav1.8-DOR mice and loxP control littermates were tested in models of chronic migraine-associated allodynia, opioid-induced hyperalgesia, migraine-associated negative affect, and aura. Nav1.8-DOR and loxP mice had comparable effect sizes in all of these models. The anti-allodynic effect of the DOR agonist, SNC80, was slightly diminished in the nitroglycerin model of migraine. Intriguingly, in the OIH model the peripheral effects of SNC80 were completely lost in Nav1.8-DOR mice while the cephalic effects remained intact. Regardless of genotype, SNC80 continued to inhibit conditioned place aversion associated with nitroglycerin and decreased cortical spreading depression events associated with migraine aura. These results suggest that DOR in Nav1.8-expressing nociceptors do not critically regulate the anti-migraine effects of delta agonist; and that brain-penetrant delta agonists would be a more effective drug development strategy.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在偏头痛和阿片诱导痛觉过敏模型中,表达Nav1.8周围神经元中的Delta阿片受体部分调节Delta激动剂的作用
偏头痛是最常见的疼痛疾病之一,每年导致数百万人残疾。Delta阿片受体(DOR)已被确定为偏头痛和其他头痛疾病的新治疗靶点。DORs存在于外周和中枢区域,目前尚不清楚哪个受体群体调节偏头痛相关的影响。本研究的目的是确定在这些小鼠模型中,外周伤害感受器中DOR表达是否调节头痛相关终点和delta激动剂的作用。我们使用了条件敲除,选择性地从表达Nav1.8的细胞中删除DOR。Nav1.8-DOR小鼠和loxP对照鼠在慢性偏头痛相关的异常性疼痛、阿片类药物引起的痛觉过敏、偏头痛相关的负面影响和先兆模型中进行了测试。在所有这些模型中,Nav1.8-DOR和loxP小鼠具有相当的效应量。DOR激动剂SNC80的抗异动作用在硝酸甘油偏头痛模型中略有减弱。有趣的是,在OIH模型中,SNC80的外周效应在Nav1.8-DOR小鼠中完全消失,而头侧效应保持不变。无论基因型如何,SNC80继续抑制与硝酸甘油相关的条件性地方厌恶,并减少与偏头痛先兆相关的皮质扩散抑制事件。这些结果表明,表达nav1.8的伤害感受器中的DOR并不能严格调节delta激动剂的抗偏头痛作用;脑渗透型受体激动剂将是一种更有效的药物开发策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Pain
Neurobiology of Pain Medicine-Anesthesiology and Pain Medicine
CiteScore
4.40
自引率
0.00%
发文量
29
审稿时长
54 days
期刊最新文献
An investigation on the role of oxytocin in chronic neuropathic pain in a Wistar rat model Adult zymosan re-exposure exacerbates the molecular alterations in the brainstem rostral ventromedial medulla of rats with early life zymosan-induced cystitis Neuronal activation patterns during self-referential pain imagination Interleukin-6 induces nascent protein synthesis in human dorsal root ganglion nociceptors primarily via MNK-eIF4E signaling The timing of the mouse hind paw incision does not influence postsurgical pain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1