Behavioral Analysis of EEG Signals in Loss-Gain Decision-Making Experiments.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-07-15 eCollection Date: 2022-01-01 DOI:10.1155/2022/3070608
Jiaquan Shen, Ningzhong Liu, Deguang Li, Binbin Zhang
{"title":"Behavioral Analysis of EEG Signals in Loss-Gain Decision-Making Experiments.","authors":"Jiaquan Shen, Ningzhong Liu, Deguang Li, Binbin Zhang","doi":"10.1155/2022/3070608","DOIUrl":null,"url":null,"abstract":"<p><p>Extraction and analysis of the EEG (electroencephalograph) information features generated during behavioral decision-making can provide a better understanding of the state of mind. Previous studies have focused more on the brainwave features after behavioral decision-making. In fact, the EEG before decision-making is more worthy of our attention. In this study, we introduce a new index based on the reaction time of subjects before decision-making, called the Prestimulus Time (PT), which have important reference value for the study of cognitive function, neurological diseases, and other fields. In our experiments, we use a wearable EEG feature signal acquisition device and a systematic reward and punishment experiment to obtain the EEG features before and after behavioral decision-making. The experimental results show that the EEG generated after behavioral decision due to loss is more intense than that generated by gain in the medial frontal cortex (MFC). In addition, different characteristics of EEG signals are generated prior to behavioral decisions because people have different expectations of the outcome. It will produce more significant negative-polarity event-related potential (ERP) in the forebrain area when the humans are optimistic about the outcomes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"3070608"},"PeriodicalIF":4.7000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/3070608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Extraction and analysis of the EEG (electroencephalograph) information features generated during behavioral decision-making can provide a better understanding of the state of mind. Previous studies have focused more on the brainwave features after behavioral decision-making. In fact, the EEG before decision-making is more worthy of our attention. In this study, we introduce a new index based on the reaction time of subjects before decision-making, called the Prestimulus Time (PT), which have important reference value for the study of cognitive function, neurological diseases, and other fields. In our experiments, we use a wearable EEG feature signal acquisition device and a systematic reward and punishment experiment to obtain the EEG features before and after behavioral decision-making. The experimental results show that the EEG generated after behavioral decision due to loss is more intense than that generated by gain in the medial frontal cortex (MFC). In addition, different characteristics of EEG signals are generated prior to behavioral decisions because people have different expectations of the outcome. It will produce more significant negative-polarity event-related potential (ERP) in the forebrain area when the humans are optimistic about the outcomes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
损益决策实验中的脑电信号行为分析。
提取和分析行为决策过程中产生的脑电图(EEG)信息特征可以更好地了解心理状态。以往的研究更多地关注行为决策后的脑电波特征。事实上,决策前的脑电图更值得我们关注。在本研究中,我们引入了一种基于受试者决策前反应时间的新指标,称为 "前刺激时间(PT)",它对认知功能、神经系统疾病等领域的研究具有重要的参考价值。在实验中,我们使用可穿戴脑电特征信号采集设备和系统奖惩实验来获取行为决策前后的脑电特征。实验结果表明,在内侧额叶皮层(MFC),因损失而做出行为决策后产生的脑电图比因收益而产生的脑电图更强烈。此外,由于人们对结果的预期不同,行为决策前产生的脑电信号的特征也不同。当人类对结果持乐观态度时,会在前脑区域产生更明显的负极性事件相关电位(ERP)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Correction to "Nucleic Acid FRET Sensing of Hydrogen Peroxide in Live Cells Using a Boronic Acid Nucleobase Surrogate". Issue Publication Information Issue Editorial Masthead Hydration Shell of PEO-PPO-PEO Block Copolymer Assembly Controls the Modulation of Protein Aggregation: Synergistic Inhibition of Fibrillation Using Trehalose and Protection from Cu2+-Induced Fibrillation. Evaluation of Remodeling and Regeneration of Electrospun PLGA@PCL/Elastin Small-Diameter Vascular Grafts In Vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1