A synthetic biscoumarin suppresses lung cancer cell proliferation and induces cell apoptosis by increasing expression of RIP1.

IF 1.4 4区 医学 Q4 PHYSIOLOGY Chinese Journal of Physiology Pub Date : 2022-05-01 DOI:10.4103/cjp.cjp_107_21
Ruixue Wang, Hongyi Xie, Xi Wang, Yingqi Liu, Zhengquan Su, Zhaoguang Zheng
{"title":"A synthetic biscoumarin suppresses lung cancer cell proliferation and induces cell apoptosis by increasing expression of RIP1.","authors":"Ruixue Wang,&nbsp;Hongyi Xie,&nbsp;Xi Wang,&nbsp;Yingqi Liu,&nbsp;Zhengquan Su,&nbsp;Zhaoguang Zheng","doi":"10.4103/cjp.cjp_107_21","DOIUrl":null,"url":null,"abstract":"<p><p>Coumarin has a variety of biological activities and widely exists in plants. Biscoumarin, derived from coumarin, their synthetic methods and bioactivities of biscoumarins is the hotspot of the current research. In this study, we evaluated for the first time the anticancer of a synthetic biscoumarin (3,3'-(4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one, C3) on lung cancer cells and explored the related mechanism. C3 was simply prepared by 4-hydroxycoumarin and 4-chlorobenzaldehyde under ethanol. The structure of C3 was elucidated by various spectroscopic analyses. The antiproliferation effect of C3 was evaluated by the cell counting kit-8 assay. Cell cycle and apoptosis analysis were detected by flow cytometry. The expression of correlated proteins was determined using Western blotting. The result showed that C3 displayed a strong cytostatic effect on Lewis lung cancer (LLC) cells. C3 inhibited the proliferation of LLC cells, and induced G2/M phase cell cycle arrest. In addition, C3 possessed a significant reduction on cell apoptosis by increasing of RIP1 expression. Our data showed that C3 suppresses lung cancer cell proliferation and induces cell apoptosis, which is possibly involved with the RIP1.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjp.cjp_107_21","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coumarin has a variety of biological activities and widely exists in plants. Biscoumarin, derived from coumarin, their synthetic methods and bioactivities of biscoumarins is the hotspot of the current research. In this study, we evaluated for the first time the anticancer of a synthetic biscoumarin (3,3'-(4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one, C3) on lung cancer cells and explored the related mechanism. C3 was simply prepared by 4-hydroxycoumarin and 4-chlorobenzaldehyde under ethanol. The structure of C3 was elucidated by various spectroscopic analyses. The antiproliferation effect of C3 was evaluated by the cell counting kit-8 assay. Cell cycle and apoptosis analysis were detected by flow cytometry. The expression of correlated proteins was determined using Western blotting. The result showed that C3 displayed a strong cytostatic effect on Lewis lung cancer (LLC) cells. C3 inhibited the proliferation of LLC cells, and induced G2/M phase cell cycle arrest. In addition, C3 possessed a significant reduction on cell apoptosis by increasing of RIP1 expression. Our data showed that C3 suppresses lung cancer cell proliferation and induces cell apoptosis, which is possibly involved with the RIP1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
合成的双香豆素通过增加RIP1的表达抑制肺癌细胞增殖,诱导细胞凋亡。
香豆素具有多种生物活性,广泛存在于植物中。双香豆素是由香豆素衍生而来,其合成方法和生物活性是目前研究的热点。本研究首次评价了合成双香豆素(3,3′-(4-氯苯基)亚甲基)双(4-羟基- 2h - chromen2 -one, C3)对肺癌细胞的抗癌作用,并探讨了其作用机制。以4-羟基香豆素和4-氯苯甲醛为原料,在乙醇条件下制备C3。通过各种光谱分析对C3的结构进行了分析。采用细胞计数试剂盒-8法评价C3的抗增殖作用。流式细胞术检测细胞周期和凋亡分析。Western blotting检测相关蛋白的表达。结果表明,C3对Lewis肺癌(LLC)细胞有较强的细胞抑制作用。C3抑制LLC细胞增殖,诱导G2/M期细胞周期阻滞。此外,C3通过增加RIP1的表达显著降低细胞凋亡。我们的数据显示C3抑制肺癌细胞增殖并诱导细胞凋亡,这可能与RIP1有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
5.60%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Chinese Journal of Physiology is a multidisciplinary open access journal. Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged. Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.
期刊最新文献
MicroRNA-150-5p-mediated Inhibition of Cell Proliferation, G1/S Transition, and Migration in Bladder Cancer through Targeting NEDD4-binding Protein 2-like 1 Gene The Anti-Atherosclerotic Effects of Buyang Huanwu Decoction through M1 and M2 Macrophage Polarization in an ApoE Knockout Mouse Model Acute Hyperoxia Improves Spinal Cord Oxygenation and Circulatory Function Following Cervical Spinal Cord Injury in Rats Tripartite Motif-containing Protein 11 Silencing Inhibits Proliferation and Glycolysis and Promotes Apoptosis of Esophageal Squamous Cell Carcinoma Cells by Inactivating Signal Transduction and Activation of Transcription Factor 3/c-Myc Signaling Anti-oncogenic mechanism of KLF17 in colon cancer by repressing cell migration and invasion via FHL1 upregulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1