Interfinger Synchronization Capability of Paired Fingers in Discrete Fine-Force Control Tasks.

IF 0.9 4区 医学 Q4 NEUROSCIENCES Motor Control Pub Date : 2022-07-28 Print Date: 2022-10-01 DOI:10.1123/mc.2021-0117
Cong Peng, Na Yao, Xin Wang, Dangxiao Wang
{"title":"Interfinger Synchronization Capability of Paired Fingers in Discrete Fine-Force Control Tasks.","authors":"Cong Peng,&nbsp;Na Yao,&nbsp;Xin Wang,&nbsp;Dangxiao Wang","doi":"10.1123/mc.2021-0117","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined whether within-a-hand and between-hands finger pairings would exhibit different interfinger synchronization capabilities in discrete fine-force control tasks. Participants were required to perform the designed force control tasks using finger pairings of index and middle fingers on one or two hands. Results demonstrated that the delayed reaction time and the timing difference of paired fingers showed a significant difference among finger pairings. In particular, paired fingers exhibited less delayed reaction time and timing difference in between-hands finger pairings than in within-a-hand finger pairings. Such bimanual advantage of the pairings with two symmetric fingers was evident only in the task types with relatively high amplitudes. However, for a given finger pairing, the asymmetric amplitude configuration, assigning a relatively higher amplitude to either left or right finger of paired fingers, has no significant effect on the interfinger synchronization. Therefore, paired fingers on both hands showed a bimanual advantage in the relatively high force, especially for the pairing of symmetrical fingers, whereas asymmetric amplitude configuration for a finger pairing was able to suppress the bimanual advantage. These findings would enrich the understanding of the interfinger synchronization capability of paired fingers and be referential for interactive engineering applications when leveraging the interfinger synchronization capability in discrete fine-force control tasks.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2021-0117","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/10/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined whether within-a-hand and between-hands finger pairings would exhibit different interfinger synchronization capabilities in discrete fine-force control tasks. Participants were required to perform the designed force control tasks using finger pairings of index and middle fingers on one or two hands. Results demonstrated that the delayed reaction time and the timing difference of paired fingers showed a significant difference among finger pairings. In particular, paired fingers exhibited less delayed reaction time and timing difference in between-hands finger pairings than in within-a-hand finger pairings. Such bimanual advantage of the pairings with two symmetric fingers was evident only in the task types with relatively high amplitudes. However, for a given finger pairing, the asymmetric amplitude configuration, assigning a relatively higher amplitude to either left or right finger of paired fingers, has no significant effect on the interfinger synchronization. Therefore, paired fingers on both hands showed a bimanual advantage in the relatively high force, especially for the pairing of symmetrical fingers, whereas asymmetric amplitude configuration for a finger pairing was able to suppress the bimanual advantage. These findings would enrich the understanding of the interfinger synchronization capability of paired fingers and be referential for interactive engineering applications when leveraging the interfinger synchronization capability in discrete fine-force control tasks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散精细力控制任务中成对手指的指间同步能力。
本研究考察了在离散的精细力控制任务中,手内和手间手指配对是否会表现出不同的手指间同步能力。参与者被要求用一只手或两只手上的食指和中指配对来执行设计的力控制任务。结果表明,手指对延迟反应时间和时间差异在不同手指对之间存在显著差异。特别是,手指配对时,手间手指配对比手内手指配对表现出更少的延迟反应时间和时间差异。这种双对称手指配对的双手优势仅在相对高振幅的任务类型中表现明显。然而,对于给定的手指配对,不对称的振幅配置,分配相对较高的幅度给配对手指的左手或右手,对手指间的同步没有显著影响。因此,双手手指配对在相对高的力下表现出双手优势,尤其是对称手指配对,而手指配对的非对称振幅配置能够抑制双手优势。这些发现将丰富对成对手指间同步能力的理解,并为在离散精细力控制任务中利用手指间同步能力的交互式工程应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Motor Control
Motor Control 医学-神经科学
CiteScore
1.80
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders. Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement. In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.
期刊最新文献
Attentional Focus Strategies Can Improve Performance of Postural Control in Runners. Effect of a Perturbation-Based Balance Training Session on Adaptive Locomotor Response in Older Adults With a History of Falls. Postmovement Beta Rebound in Real and Imagined Movement. Vision Is Not Required to Elicit Balance Improvements From Beam Walking Practice. Effectiveness of Motor Imagery on Physical Function in Patients With Stroke: A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1