Yusuf Enes Kazci , Sevilay Sahoglu Goktas , Mehmet Serif Aydin , Behnaz Karadogan , Aylin Nebol , Mehmet Ugurcan Turhan , Gurkan Ozturk , Esra Cagavi
{"title":"Anatomical characterization of vagal nodose afferent innervation and ending morphologies at the murine heart using a transgenic approach","authors":"Yusuf Enes Kazci , Sevilay Sahoglu Goktas , Mehmet Serif Aydin , Behnaz Karadogan , Aylin Nebol , Mehmet Ugurcan Turhan , Gurkan Ozturk , Esra Cagavi","doi":"10.1016/j.autneu.2022.103019","DOIUrl":null,"url":null,"abstract":"<div><p><span>Heart is an extensively innervated organ and its function is strictly coordinated by autonomic neural circuits. After pathological events such as </span>myocardial infarction<span> (MI), cardiac nerves undergo a structural and functional remodeling contributing to cardiac dysfunction. Although the efferent component of the cardiac nerves has been well described, sensory innervation<span> of the heart has not been defined in detail. Considering its importance, comprehensive description of vagal afferent innervation on the whole heart would enable a better description of autonomic imbalances manifesting as sympathoexcitation and vagal withdrawal in post-ischemic states. To address this issue, we globally mapped the vagal nodose afferent fibers innervating the whole murine heart with unprecedented resolution. By using the Phox2b-Cre::tdTomato transgenic mouse<span> line, we described the detailed distribution and distinct vagal sensory ending morphologies at both the dorsal and ventral sides of the mouse heart. By neural tracing analysis, we quantitated the distribution and prevalence of vagal afferent nerve fibers<span> with varying diameters across dorsal and ventral surfaces of the heart. Moreover, we demonstrated that vagal afferents formed flower spray and end-net-like endings within the atria and ventricles. As distinct from the atria, vagal afferents formed intramuscular array-like endings within the ventricles. Furthermore, we showed that vagal afferents undergo structural remodeling by forming axonal sprouts around the infarct area in post-MI hearts. These findings improve our understanding of the potential effect of vagal afferent remodeling on autonomic imbalance and generation of cardiac arrhythmias and could prospectively contribute to the development of more effective neuromodulatory therapies.</span></span></span></span></p></div>","PeriodicalId":55410,"journal":{"name":"Autonomic Neuroscience-Basic & Clinical","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomic Neuroscience-Basic & Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566070222000789","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Heart is an extensively innervated organ and its function is strictly coordinated by autonomic neural circuits. After pathological events such as myocardial infarction (MI), cardiac nerves undergo a structural and functional remodeling contributing to cardiac dysfunction. Although the efferent component of the cardiac nerves has been well described, sensory innervation of the heart has not been defined in detail. Considering its importance, comprehensive description of vagal afferent innervation on the whole heart would enable a better description of autonomic imbalances manifesting as sympathoexcitation and vagal withdrawal in post-ischemic states. To address this issue, we globally mapped the vagal nodose afferent fibers innervating the whole murine heart with unprecedented resolution. By using the Phox2b-Cre::tdTomato transgenic mouse line, we described the detailed distribution and distinct vagal sensory ending morphologies at both the dorsal and ventral sides of the mouse heart. By neural tracing analysis, we quantitated the distribution and prevalence of vagal afferent nerve fibers with varying diameters across dorsal and ventral surfaces of the heart. Moreover, we demonstrated that vagal afferents formed flower spray and end-net-like endings within the atria and ventricles. As distinct from the atria, vagal afferents formed intramuscular array-like endings within the ventricles. Furthermore, we showed that vagal afferents undergo structural remodeling by forming axonal sprouts around the infarct area in post-MI hearts. These findings improve our understanding of the potential effect of vagal afferent remodeling on autonomic imbalance and generation of cardiac arrhythmias and could prospectively contribute to the development of more effective neuromodulatory therapies.
期刊介绍:
This is an international journal with broad coverage of all aspects of the autonomic nervous system in man and animals. The main areas of interest include the innervation of blood vessels and viscera, autonomic ganglia, efferent and afferent autonomic pathways, and autonomic nuclei and pathways in the central nervous system.
The Editors will consider papers that deal with any aspect of the autonomic nervous system, including structure, physiology, pharmacology, biochemistry, development, evolution, ageing, behavioural aspects, integrative role and influence on emotional and physical states of the body. Interdisciplinary studies will be encouraged. Studies dealing with human pathology will be also welcome.