Adipose stromal vascular fraction: a promising treatment for severe burn injury.

IF 4.3 3区 生物学 Human Cell Pub Date : 2022-09-01 Epub Date: 2022-07-30 DOI:10.1007/s13577-022-00743-z
Khloud Fakiha
{"title":"Adipose stromal vascular fraction: a promising treatment for severe burn injury.","authors":"Khloud Fakiha","doi":"10.1007/s13577-022-00743-z","DOIUrl":null,"url":null,"abstract":"<p><p>Thermal skin burn injury affects both adults and children globally. Severe burn injury affects a patient's life psychologically, cosmetically, and socially. The pathophysiology of burn injury is well known. Due to the complexity of burn pathophysiology, the development of specific treatment aiding in tissue regeneration is required. Treatment of burn injury depends on burn severity, size of the burn and availability of donor site. Burn healing requires biochemical and cellular events to ensure better cell response to biochemical signals of the healing process. This led to the consideration of using cell therapy for severe burn injury. Adult mesenchymal stem cells have become a therapeutic option because of their ability for self-renewal and differentiation. Adipose stromal vascular fraction (SVF), isolated from adipose tissues, is a heterogeneous cell population that contains adipose-derived stromal/stem cells (ADSC), stromal, endothelial, hematopoietic and pericytic lineages. SVF isolation has advantages over other types of cells; such as heterogeneity of cells, lower invasive extraction procedure, high yield of cells, and fast and easy isolation. Therefore, SVF has many characteristics that enable them to be a therapeutic option for burn treatment. Studies have been conducted mostly in animal models to investigate their therapeutic potential for burn injury. They can be used alone or in combination with other treatment options. Treatment with both ADSCs and/or SVF enhances burn healing through increasing re-epithelization, angiogenesis and decreasing inflammation and scar formation. Research needs to be conducted for a better understanding of the SVF mechanism in burn healing and to optimize current techniques for enhanced treatment outcomes.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1323-1337"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00743-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Thermal skin burn injury affects both adults and children globally. Severe burn injury affects a patient's life psychologically, cosmetically, and socially. The pathophysiology of burn injury is well known. Due to the complexity of burn pathophysiology, the development of specific treatment aiding in tissue regeneration is required. Treatment of burn injury depends on burn severity, size of the burn and availability of donor site. Burn healing requires biochemical and cellular events to ensure better cell response to biochemical signals of the healing process. This led to the consideration of using cell therapy for severe burn injury. Adult mesenchymal stem cells have become a therapeutic option because of their ability for self-renewal and differentiation. Adipose stromal vascular fraction (SVF), isolated from adipose tissues, is a heterogeneous cell population that contains adipose-derived stromal/stem cells (ADSC), stromal, endothelial, hematopoietic and pericytic lineages. SVF isolation has advantages over other types of cells; such as heterogeneity of cells, lower invasive extraction procedure, high yield of cells, and fast and easy isolation. Therefore, SVF has many characteristics that enable them to be a therapeutic option for burn treatment. Studies have been conducted mostly in animal models to investigate their therapeutic potential for burn injury. They can be used alone or in combination with other treatment options. Treatment with both ADSCs and/or SVF enhances burn healing through increasing re-epithelization, angiogenesis and decreasing inflammation and scar formation. Research needs to be conducted for a better understanding of the SVF mechanism in burn healing and to optimize current techniques for enhanced treatment outcomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂肪间质血管组分:一种治疗严重烧伤的有希望的方法。
热性皮肤烧伤在全球范围内既影响成人也影响儿童。严重的烧伤会影响患者的心理、外貌和社会生活。烧伤的病理生理学是众所周知的。由于烧伤病理生理的复杂性,需要开发帮助组织再生的特异性治疗方法。烧伤的治疗取决于烧伤的严重程度,烧伤的大小和供体部位的可用性。烧伤愈合需要生化和细胞事件,以确保更好的细胞对愈合过程的生化信号作出反应。这导致考虑使用细胞疗法治疗严重烧伤。成体间充质干细胞因其自我更新和分化的能力而成为一种治疗选择。脂肪基质血管组分(SVF)是从脂肪组织中分离出来的,是一种异质细胞群,包含脂肪来源的基质/干细胞(ADSC)、基质细胞、内皮细胞、造血细胞和周细胞谱系。SVF的分离优于其他类型的细胞;具有细胞异质性、提取过程侵入性小、细胞产率高、分离快速简便等优点。因此,SVF具有许多特性,使其成为烧伤治疗的一种治疗选择。研究大多在动物模型中进行,以研究其对烧伤损伤的治疗潜力。它们可以单独使用,也可以与其他治疗方案联合使用。ADSCs和/或SVF治疗通过增加再上皮、血管生成和减少炎症和疤痕形成来促进烧伤愈合。为了更好地了解SVF在烧伤愈合中的机制,并优化现有技术以提高治疗效果,需要进行研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Cell
Human Cell 生物-细胞生物学
CiteScore
6.60
自引率
2.30%
发文量
176
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
期刊最新文献
PROX1 is a regulator of neuroendocrine-related gene expression in lung carcinoid Establishment and characterization of TK-ALCL1: a novel NPM-ALK-positive anaplastic large-cell lymphoma cell line. Overexpressing Bcl-2 enhances murine chimeric antigen receptor T cell therapy against solid tumor MicroRNA-322-5p targeting Smurf2 regulates the TGF-β/Smad pathway to protect cardiac function and inhibit myocardial infarction. Genetic diversity among the present Japanese population: evidence from genotyping of human cell lines established in Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1