The limits of molecular signatures for pancreatic ductal adenocarcinoma subtyping.

NAR Cancer Pub Date : 2022-10-17 eCollection Date: 2022-12-01 DOI:10.1093/narcan/zcac030
Manuela Lautizi, Jan Baumbach, Wilko Weichert, Katja Steiger, Markus List, Nicole Pfarr, Tim Kacprowski
{"title":"The limits of molecular signatures for pancreatic ductal adenocarcinoma subtyping.","authors":"Manuela Lautizi,&nbsp;Jan Baumbach,&nbsp;Wilko Weichert,&nbsp;Katja Steiger,&nbsp;Markus List,&nbsp;Nicole Pfarr,&nbsp;Tim Kacprowski","doi":"10.1093/narcan/zcac030","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular signatures have been suggested as biomarkers to classify pancreatic ductal adenocarcinoma (PDAC) into two, three, four or five subtypes. Since the robustness of existing signatures is controversial, we performed a systematic evaluation of four established signatures for PDAC stratification across nine publicly available datasets. Clustering revealed inconsistency of subtypes across independent datasets and in some cases a different number of PDAC subgroups than in the original study, casting doubt on the actual number of existing subtypes. Next, we built sixteen classification models to investigate the ability of the signatures for tumor subtype prediction. The overall classification performance ranged from ∼35% to ∼90% accuracy, suggesting instability of the signatures. Notably, permuted subtypes and random gene sets achieved very similar performance. Cellular decomposition and functional pathway enrichment analysis revealed strong tissue-specificity of the predicted classes. Our study highlights severe limitations and inconsistencies that can be attributed to technical biases in sample preparation and tumor purity, suggesting that PDAC molecular signatures do not generalize across datasets. How stromal heterogeneity and immune compartment interplay in the diverging development of PDAC is still unclear. Therefore, a more mechanistic or a cross-platform multi-omic approach seems necessary to extract more robust and clinically exploitable insights.</p>","PeriodicalId":18879,"journal":{"name":"NAR Cancer","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9575186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/narcan/zcac030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular signatures have been suggested as biomarkers to classify pancreatic ductal adenocarcinoma (PDAC) into two, three, four or five subtypes. Since the robustness of existing signatures is controversial, we performed a systematic evaluation of four established signatures for PDAC stratification across nine publicly available datasets. Clustering revealed inconsistency of subtypes across independent datasets and in some cases a different number of PDAC subgroups than in the original study, casting doubt on the actual number of existing subtypes. Next, we built sixteen classification models to investigate the ability of the signatures for tumor subtype prediction. The overall classification performance ranged from ∼35% to ∼90% accuracy, suggesting instability of the signatures. Notably, permuted subtypes and random gene sets achieved very similar performance. Cellular decomposition and functional pathway enrichment analysis revealed strong tissue-specificity of the predicted classes. Our study highlights severe limitations and inconsistencies that can be attributed to technical biases in sample preparation and tumor purity, suggesting that PDAC molecular signatures do not generalize across datasets. How stromal heterogeneity and immune compartment interplay in the diverging development of PDAC is still unclear. Therefore, a more mechanistic or a cross-platform multi-omic approach seems necessary to extract more robust and clinically exploitable insights.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胰腺导管腺癌亚型分型分子特征的局限性。
分子特征被认为是将胰腺导管腺癌(PDAC)分为2、3、4或5个亚型的生物标志物。由于现有签名的稳健性存在争议,我们对九个公开可用数据集上的四个已建立的PDAC分层签名进行了系统评估。聚类揭示了独立数据集的亚型不一致,在某些情况下,PDAC亚组的数量与原始研究不同,这使人们对现有亚型的实际数量产生了怀疑。接下来,我们建立了16个分类模型来研究这些特征对肿瘤亚型预测的能力。总体分类性能的准确度在~ 35%到~ 90%之间,表明签名的不稳定性。值得注意的是,排列亚型和随机基因集的表现非常相似。细胞分解和功能途径富集分析显示预测类具有很强的组织特异性。我们的研究强调了严重的局限性和不一致性,这些局限性和不一致性可归因于样品制备和肿瘤纯度的技术偏差,这表明PDAC分子特征不能在数据集上推广。基质异质性和免疫室在PDAC分化发展中的相互作用尚不清楚。因此,一种更机械或跨平台的多组学方法似乎是必要的,以提取更可靠和临床可利用的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pan-cancer analysis of promoter activity quantitative trait loci Large-scale phenogenomic analysis of human cancers uncovers frequent alterations affecting SMC5/6 complex components in breast cancer. Inhibition of nonsense-mediated mRNA decay reduces the tumorigenicity of human fibrosarcoma cells. CDK2 regulates collapsed replication fork repair in CCNE1-amplified ovarian cancer cells via homologous recombination. Editorial: DNA repair and nucleic acid therapeutics in cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1