Chen-liang Zhang (张晨亮) , Jin-bao Wang (王金宝) , Yi Zhu (朱怡) , Francis Noblesse
{"title":"Stationary phase and practical numerical evaluation of ship waves in shallow water","authors":"Chen-liang Zhang (张晨亮) , Jin-bao Wang (王金宝) , Yi Zhu (朱怡) , Francis Noblesse","doi":"10.1016/S1001-6058(16)60793-X","DOIUrl":null,"url":null,"abstract":"<div><p>A simple and highly-efficient method for numerically evaluating the waves created by a ship that travels at a constant speed in calm water, of large depth or of uniform depth, is given. The method, inspired by Kelvin's classical stationary-phase analysis, is suited for evaluating far-field as well as near-field waves. More generally, the method can be applied to a broad class of integrals with integrands that contain a rapidly oscillatory trigonometric function with a phase function whose first derivative (and possibly also higher derivatives) vanishes at one or several points, commonly called points of stationary phase, with the range of integration.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 5","pages":"Pages 817-824"},"PeriodicalIF":3.4000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60793-X","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100160581660793X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3
Abstract
A simple and highly-efficient method for numerically evaluating the waves created by a ship that travels at a constant speed in calm water, of large depth or of uniform depth, is given. The method, inspired by Kelvin's classical stationary-phase analysis, is suited for evaluating far-field as well as near-field waves. More generally, the method can be applied to a broad class of integrals with integrands that contain a rapidly oscillatory trigonometric function with a phase function whose first derivative (and possibly also higher derivatives) vanishes at one or several points, commonly called points of stationary phase, with the range of integration.