LinearAlifold: Linear-Time Consensus Structure Prediction for RNA Alignments.

ArXiv Pub Date : 2024-07-05
Apoorv Malik, Liang Zhang, Milan Gautam, Ning Dai, Sizhen Li, He Zhang, David H Mathews, Liang Huang
{"title":"LinearAlifold: Linear-Time Consensus Structure Prediction for RNA Alignments.","authors":"Apoorv Malik, Liang Zhang, Milan Gautam, Ning Dai, Sizhen Li, He Zhang, David H Mathews, Liang Huang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (~30,000nt). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 hours on the above 400 genomes, or ~36$\\times$ speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold's prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at: https://github.com/LinearFold/LinearAlifold (code) and http://linearfold.org/linear-alifold (server).</p>","PeriodicalId":8425,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9258297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the consensus structure of a set of aligned RNA homologs is a convenient method to find conserved structures in an RNA genome, which has many applications including viral diagnostics and therapeutics. However, the most commonly used tool for this task, RNAalifold, is prohibitively slow for long sequences, due to a cubic scaling with the sequence length, taking over a day on 400 SARS-CoV-2 and SARS-related genomes (~30,000nt). We present LinearAlifold, a much faster alternative that scales linearly with both the sequence length and the number of sequences, based on our work LinearFold that folds a single RNA in linear time. Our work is orders of magnitude faster than RNAalifold (0.7 hours on the above 400 genomes, or ~36$\times$ speedup) and achieves higher accuracies when compared to a database of known structures. More interestingly, LinearAlifold's prediction on SARS-CoV-2 correlates well with experimentally determined structures, substantially outperforming RNAalifold. Finally, LinearAlifold supports two energy models (Vienna and BL*) and four modes: minimum free energy (MFE), maximum expected accuracy (MEA), ThreshKnot, and stochastic sampling, each of which takes under an hour for hundreds of SARS-CoV variants. Our resource is at: https://github.com/LinearFold/LinearAlifold (code) and http://linearfold.org/linear-alifold (server).

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LinearAlifold:RNA 对齐的线性时间共识结构预测
预测一组对齐的 RNA 同源物的共识结构是发现 RNA 基因组中保守结构的一种便捷方法,它在病毒诊断和治疗等方面有很多应用。然而,最常用的工具 RNAalifold 在处理长序列时速度太慢,因为序列长度呈立方缩放,处理 400 个 SARS-CoV-2 和 SARS 相关基因组(约 30,000nt )需要一天多的时间。我们提出的 LinearAlifold 是一种更快的替代方法,它与序列长度和序列数量成线性比例,基于我们在线性时间内折叠单个 RNA 的工作 LinearFold。我们的工作比 RNAalifold 快了几个数量级(在上述 400 个基因组上只用了 0.7 个小时,即加快了约 36 倍),而且与已知结构数据库相比,达到了更高的精确度。更有趣的是,LinearAlifold 对 SARS-CoV-2 的预测与实验确定的结构有很好的相关性,大大超过了 RNAalifold。最后,LinearAlifold 支持两种能量模型(Vienna 和 BL*)和四种模式:最小自由能 (MFE)、最大预期准确度 (MEA)、ThreshKnot 和随机抽样,其中每种模式对数百种 SARS-CoV 变体的预测时间都不超过一小时。我们的资源位于:https://github.com/LinearFold/LinearAlifold(代码)和 http://linearfold.org/linear-alifold(服务器)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Brain Tumor Segmentation - Metastases (BraTS-METS) Challenge 2023: Brain Metastasis Segmentation on Pre-treatment MRI. Image Statistics Predict the Sensitivity of Perceptual Quality Metrics. The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn). Matching Patients to Clinical Trials with Large Language Models. Epithelial layer fluidization by curvature-induced unjamming.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1