Thomas A Murray, Peter F Thall, Frederique Schortgen, Pierre Asfar, Sarah Zohar, Sandrine Katsahian
{"title":"Robust Adaptive Incorporation of Historical Control Data in a Randomized Trial of External Cooling to Treat Septic Shock.","authors":"Thomas A Murray, Peter F Thall, Frederique Schortgen, Pierre Asfar, Sarah Zohar, Sandrine Katsahian","doi":"10.1214/20-ba1229","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes randomized controlled clinical trial design to evaluate external cooling as a means to control fever and thereby reduce mortality in patients with septic shock. The trial will include concurrent external cooling and control arms while adaptively incorporating historical control arm data. Bayesian group sequential monitoring will be done using a posterior comparative test based on the 60-day survival distribution in each concurrent arm. Posterior inference will follow from a Bayesian discrete time survival model that facilitates adaptive incorporation of the historical control data through an innovative regression framework with a multivariate spike-and-slab prior distribution on the historical bias parameters. For each interim test, the amount of information borrowed from the historical control data will be determined adaptively in a manner that reflects the degree of agreement between historical and concurrent control arm data. Guidance is provided for selecting Bayesian posterior probability group-sequential monitoring boundaries. Simulation results elucidating how the proposed method borrows strength from the historical control data are reported. In the absence of historical control arm bias, the proposed design controls the type I error rate and provides substantially larger power than reasonable comparators, whereas in the presence bias of varying magnitude, type I error rate inflation is curbed.</p>","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9585618/pdf/nihms-1804885.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/20-ba1229","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
This paper proposes randomized controlled clinical trial design to evaluate external cooling as a means to control fever and thereby reduce mortality in patients with septic shock. The trial will include concurrent external cooling and control arms while adaptively incorporating historical control arm data. Bayesian group sequential monitoring will be done using a posterior comparative test based on the 60-day survival distribution in each concurrent arm. Posterior inference will follow from a Bayesian discrete time survival model that facilitates adaptive incorporation of the historical control data through an innovative regression framework with a multivariate spike-and-slab prior distribution on the historical bias parameters. For each interim test, the amount of information borrowed from the historical control data will be determined adaptively in a manner that reflects the degree of agreement between historical and concurrent control arm data. Guidance is provided for selecting Bayesian posterior probability group-sequential monitoring boundaries. Simulation results elucidating how the proposed method borrows strength from the historical control data are reported. In the absence of historical control arm bias, the proposed design controls the type I error rate and provides substantially larger power than reasonable comparators, whereas in the presence bias of varying magnitude, type I error rate inflation is curbed.
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.