Performance Evaluation of a Preclinical SPECT Scanner with a Collimator Designed for Medium-Sized Animals.

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS Molecular Imaging Pub Date : 2022-07-16 eCollection Date: 2022-01-01 DOI:10.1155/2022/9810097
Yohji Matsusaka, Rudolf A Werner, Paula Arias-Loza, Naoko Nose, Takanori Sasaki, Xinyu Chen, Constantin Lapa, Takahiro Higuchi
{"title":"Performance Evaluation of a Preclinical SPECT Scanner with a Collimator Designed for Medium-Sized Animals.","authors":"Yohji Matsusaka,&nbsp;Rudolf A Werner,&nbsp;Paula Arias-Loza,&nbsp;Naoko Nose,&nbsp;Takanori Sasaki,&nbsp;Xinyu Chen,&nbsp;Constantin Lapa,&nbsp;Takahiro Higuchi","doi":"10.1155/2022/9810097","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Equipped with two stationary detectors, a large bore collimator for medium-sized animals has been recently introduced for dedicated preclinical single-photon emission computed tomography (SPECT) imaging. We aimed to evaluate the basic performance of the system using phantoms and healthy rabbits.</p><p><strong>Methods: </strong>A general-purpose medium-sized animal (GP-MSA) collimator with 135 mm bore diameter and thirty-three holes of 2.5 mm diameter was installed on an ultrahigh-resolution scanner equipped with two large stationary detectors (U-SPECT5-E/CT). The sensitivity and uniformity were investigated using a point source and a cylinder phantom containing <sup>99m</sup>Tc-pertechnetate, respectively. Uniformity (in %) was derived using volumes of interest (VOIs) on images of the cylinder phantom and calculated as [(maximum count - minimum count)/(maximum count + minimum count) × 100], with lower values of % indicating superior performance. The spatial resolution and contrast-to-noise ratios (CNRs) were evaluated with images of a hot-rod Derenzo phantom using different activity concentrations. Feasibility of <i>in vivo</i> SPECT imaging was finally confirmed by rabbit imaging with the most commonly used clinical myocardial perfusion SPECT agent [<sup>99m</sup>Tc]Tc-sestamibi (dynamic acquisition with a scan time of 5 min).</p><p><strong>Results: </strong>In the performance evaluation, a sensitivity of 790 cps/MBq, a spatial resolution with the hot-rod phantom of 2.5 mm, and a uniformity of 39.2% were achieved. The CNRs of the rod size 2.5 mm were 1.37, 1.24, 1.20, and 0.85 for activity concentration of 29.2, 1.0, 0.5, and 0.1 MBq/mL, respectively. Dynamic SPECT imaging in rabbits allowed to visualize most of the thorax and to generate time-activity curves of the left myocardial wall and ventricular cavity.</p><p><strong>Conclusion: </strong>Preclinical U-SPECT5-E/CT equipped with a large bore collimator demonstrated adequate sensitivity and resolution for <i>in vivo</i> rabbit imaging. Along with its unique features of SPECT molecular functional imaging is a superior collimator technology that is applicable to medium-sized animal models and thus may promote translational research for diagnostic purposes and development of novel therapeutics.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/9810097","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Equipped with two stationary detectors, a large bore collimator for medium-sized animals has been recently introduced for dedicated preclinical single-photon emission computed tomography (SPECT) imaging. We aimed to evaluate the basic performance of the system using phantoms and healthy rabbits.

Methods: A general-purpose medium-sized animal (GP-MSA) collimator with 135 mm bore diameter and thirty-three holes of 2.5 mm diameter was installed on an ultrahigh-resolution scanner equipped with two large stationary detectors (U-SPECT5-E/CT). The sensitivity and uniformity were investigated using a point source and a cylinder phantom containing 99mTc-pertechnetate, respectively. Uniformity (in %) was derived using volumes of interest (VOIs) on images of the cylinder phantom and calculated as [(maximum count - minimum count)/(maximum count + minimum count) × 100], with lower values of % indicating superior performance. The spatial resolution and contrast-to-noise ratios (CNRs) were evaluated with images of a hot-rod Derenzo phantom using different activity concentrations. Feasibility of in vivo SPECT imaging was finally confirmed by rabbit imaging with the most commonly used clinical myocardial perfusion SPECT agent [99mTc]Tc-sestamibi (dynamic acquisition with a scan time of 5 min).

Results: In the performance evaluation, a sensitivity of 790 cps/MBq, a spatial resolution with the hot-rod phantom of 2.5 mm, and a uniformity of 39.2% were achieved. The CNRs of the rod size 2.5 mm were 1.37, 1.24, 1.20, and 0.85 for activity concentration of 29.2, 1.0, 0.5, and 0.1 MBq/mL, respectively. Dynamic SPECT imaging in rabbits allowed to visualize most of the thorax and to generate time-activity curves of the left myocardial wall and ventricular cavity.

Conclusion: Preclinical U-SPECT5-E/CT equipped with a large bore collimator demonstrated adequate sensitivity and resolution for in vivo rabbit imaging. Along with its unique features of SPECT molecular functional imaging is a superior collimator technology that is applicable to medium-sized animal models and thus may promote translational research for diagnostic purposes and development of novel therapeutics.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为中型动物设计的带准直器的临床前SPECT扫描仪的性能评估。
背景:配备两个固定探测器,大口径准直器中型动物最近被引入专用临床前单光子发射计算机断层扫描(SPECT)成像。我们的目的是用幻影和健康家兔来评估该系统的基本性能。方法:将直径为135 mm、直径为2.5 mm的通用中型动物(GP-MSA)准直器安装在配备两台大型固定式探测器(u - spec5 - e /CT)的超高分辨率扫描仪上。采用点光源和含99mtc - pertechate的圆柱形模体分别研究了灵敏度和均匀性。均匀性(以%为单位)是使用圆柱体幻影图像上的感兴趣体积(voi)得出的,计算方法为[(最大计数-最小计数)/(最大计数+最小计数)× 100], %的值越低表明性能越好。利用不同活性浓度的热杆Derenzo模体图像评估空间分辨率和噪比(CNRs)。最后用临床最常用的心肌灌注SPECT显像剂[99mTc]Tc-sestamibi(动态获取,扫描时间为5分钟)对兔进行显像,证实了体内SPECT成像的可行性。结果:在性能评价中,灵敏度为790 cps/MBq,热棒模体的空间分辨率为2.5 mm,均匀度为39.2%。活性浓度为29.2、1.0、0.5和0.1 MBq/mL时,2.5 mm棒材的cnr分别为1.37、1.24、1.20和0.85。兔动态SPECT成像可以显示大部分胸腔,并生成左心肌壁和心室腔的时间-活动曲线。结论:临床前u - spec5 - e /CT配备大口径准直器,对兔体内成像具有足够的灵敏度和分辨率。SPECT分子功能成像的独特特点是一种优越的准直技术,适用于中型动物模型,因此可以促进诊断目的的转化研究和新疗法的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Imaging
Molecular Imaging Biochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍: Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.
期刊最新文献
Comparison of Tumor Non-specific and PD-L1 Specific Imaging by Near-Infrared Fluorescence/Cerenkov Luminescence Dual-Modality In-situ Imaging. Study on the Relationship Between MRI Functional Imaging and Multiple Immunohistochemical Features of Glioma: A Noninvasive and More Precise Glioma Management. PET/CT in the Evaluation of CAR-T Cell Immunotherapy in Hematological Malignancies. Combining Nuclear Medicine With Other Modalities: Future Prospect for Multimodality Imaging. Optical and MRI Multimodal Tracing of Stem Cells In Vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1