iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-08-01 Epub Date: 2022-08-03 DOI:10.1142/S0219720022500172
Hongliang Zou
{"title":"iRNA5hmC-HOC: High-order correlation information for identifying RNA 5-hydroxymethylcytosine modification.","authors":"Hongliang Zou","doi":"10.1142/S0219720022500172","DOIUrl":null,"url":null,"abstract":"<p><p>RNA 5-hydroxymethylcytosine (5 hmC) is an important RNA modification, which plays vital role in several biological processes. Currently, it is a hot topic to identify 5 hmC sites due to its benefit in understanding its biological functions. Therefore, in this study, we developed a predictor called iRNA5 hmC-HOC, which is based on a high-order correlation information method to identify 5 hmC sites. To build the model, 22 different classes of dinucleotide physicochemical (PC) properties were employed to represent RNA sequences, and the least absolute shrinkage and selection operator (LASSO) algorithm was adopted to select the most discriminative features. In the jackknife test, the proposed method achieved 89.80% classification accuracy based on support vector machine (SVM). As compared with the state-of-the-art predictors, our proposed method has significant improvement on the classification performance. It indicates that the proposed method might be a promising tool in identifying RNA 5 hmC modification sites. The dataset and source codes are available at https://figshare.com/articles/online_resource/iRNA5hmC-HOC/15177450.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500172","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA 5-hydroxymethylcytosine (5 hmC) is an important RNA modification, which plays vital role in several biological processes. Currently, it is a hot topic to identify 5 hmC sites due to its benefit in understanding its biological functions. Therefore, in this study, we developed a predictor called iRNA5 hmC-HOC, which is based on a high-order correlation information method to identify 5 hmC sites. To build the model, 22 different classes of dinucleotide physicochemical (PC) properties were employed to represent RNA sequences, and the least absolute shrinkage and selection operator (LASSO) algorithm was adopted to select the most discriminative features. In the jackknife test, the proposed method achieved 89.80% classification accuracy based on support vector machine (SVM). As compared with the state-of-the-art predictors, our proposed method has significant improvement on the classification performance. It indicates that the proposed method might be a promising tool in identifying RNA 5 hmC modification sites. The dataset and source codes are available at https://figshare.com/articles/online_resource/iRNA5hmC-HOC/15177450.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iRNA5hmC-HOC:用于鉴定RNA5 -羟甲基胞嘧啶修饰的高阶相关信息。
RNA 5-羟甲基胞嘧啶(5 -hydroxymethylcytosine, 5- hmC)是一种重要的RNA修饰,在许多生物过程中起着重要作用。目前,确定5个hmC位点有助于了解其生物学功能,是研究的热点。因此,在本研究中,我们开发了一个名为iRNA5 hmC- hoc的预测器,该预测器基于高阶相关信息方法来识别5个hmC位点。为了建立模型,采用22种不同类型的二核苷酸物理化学(PC)性质来表示RNA序列,并采用最小绝对收缩和选择算子(LASSO)算法来选择最具区别性的特征。在刀切测试中,基于支持向量机(SVM)的分类准确率达到89.80%。与目前最先进的预测器相比,我们提出的方法在分类性能上有显著提高。这表明该方法可能是一种很有前途的鉴定RNA 5hmc修饰位点的工具。数据集和源代码可在https://figshare.com/articles/online_resource/iRNA5hmC-HOC/15177450上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1