Morphogenetic Roles of Hydrostatic Pressure in Animal Development.

IF 3.8 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY ACS Chemical Biology Pub Date : 2022-10-06 Epub Date: 2022-07-08 DOI:10.1146/annurev-cellbio-120320-033250
Michel Bagnat, Bijoy Daga, Stefano Di Talia
{"title":"Morphogenetic Roles of Hydrostatic Pressure in Animal Development.","authors":"Michel Bagnat,&nbsp;Bijoy Daga,&nbsp;Stefano Di Talia","doi":"10.1146/annurev-cellbio-120320-033250","DOIUrl":null,"url":null,"abstract":"<p><p>During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"375-394"},"PeriodicalIF":3.8000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675319/pdf/nihms-1847762.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-120320-033250","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

During organismal development, organs and systems are built following a genetic blueprint that produces structures capable of performing specific physiological functions. Interestingly, we have learned that the physiological activities of developing tissues also contribute to their own morphogenesis. Specifically, physiological activities such as fluid secretion and cell contractility generate hydrostatic pressure that can act as a morphogenetic force. Here, we first review the role of hydrostatic pressure in tube formation during animal development and discuss mathematical models of lumen formation. We then illustrate specific roles of the notochord as a hydrostatic scaffold in anterior-posterior axis development in chordates. Finally, we cover some examples of how fluid flows influence morphogenetic processes in other developmental contexts. Understanding how fluid forces act during development will be key for uncovering the self-organizing principles that control morphogenesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静水压力在动物发育中的形态学作用。
在生物体发育过程中,器官和系统是根据基因蓝图构建的,该蓝图产生能够执行特定生理功能的结构。有趣的是,我们已经了解到,发育中的组织的生理活动也有助于其自身的形态发生。具体来说,生理活动,如液体分泌和细胞收缩性,会产生静水压力,作为形态发生力。在这里,我们首先回顾了动物发育过程中静水压力在导管形成中的作用,并讨论了管腔形成的数学模型。然后,我们阐明了脊索作为静水压支架在脊索前后轴发育中的具体作用。最后,我们介绍了在其他发育环境中流体流动如何影响形态发生过程的一些例子。了解流体力在发育过程中的作用将是揭示控制形态发生的自组织原理的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
期刊最新文献
Synthesis and Characterization of ULK1/2 Kinase Inhibitors That Inhibit Autophagy and Upregulate Expression of Major Histocompatibility Complex I for the Treatment of Non-Small Cell Lung Cancer. Manipulation of Global Regulator mcrA Activates the Fumigermin Pathway in Penicillium camemberti IMV00769. Protocol for Discovery and Characterization of Miniature Cas12 Systems. Three-Component Glycosylation of Transient Hemiacetals Toward Tunable Aryl-Bisacetal Substrates. Evaluating Linker Architecture in RNA-Detecting Riboglow Probes and Effects on Fluorescence Turn-On.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1