Identification of a novel homozygous mutation in NAXE gene associated with early-onset progressive encephalopathy by whole-exome sequencing: in silico protein structure characterization, molecular docking, and dynamic simulation.
{"title":"Identification of a novel homozygous mutation in NAXE gene associated with early-onset progressive encephalopathy by whole-exome sequencing: in silico protein structure characterization, molecular docking, and dynamic simulation.","authors":"Marwa Maalej, Lamia Sfaihi, Marwa Ammar, Fakher Frikha, Marwa Kharrat, Olfa Alila-Fersi, Emna Mkaouar-Rebai, Abdelaziz Tlili, Thouraya Kammoun, Faiza Fakhfakh","doi":"10.1007/s10048-022-00696-3","DOIUrl":null,"url":null,"abstract":"<p><p>Progressive encephalopathy with brain edema and/or leukoencephalopathy, PEBEL1, is a severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration associated with a febrile illness. PEBEL1 is a lethal encephalopathy caused by NAXE gene mutations. Here we report a 6-month-old boy with mitochondrial encephalomyopathy from a consanguineous family. Molecular analysis was performed using whole-exome sequencing followed by segregation analysis. In addition, in silico prediction tools and molecular dynamic approaches were used to predict the structural effect of the mutation. Furthermore, molecular docking of the substrate NADP in both wild-type and mutated NAXE protein was carried out. Molecular analysis revealed the presence of the novel homozygous mutation c.641 T > A (p. Ile214Asn) in the NAXE gene, located at the NAD (P)H hydrate epimerase domain. In addition, bioinformatics analyses and molecular dynamics revealed that p. Ile214Asn mutation could affect the structure, stability, and compactness of the NAXE protein. Moreover, the result of the molecular docking showed that the p. Ile214Asn mutation leads to conformational changes in the catalytic cavity, thus modifying interaction with the substrate and restricting its access. We also compared the phenotype of our patient with those of previously reported cases with PEBEL syndrome. All bioinformatics findings provide evidence that the NAXE variant Asn214 disrupts NAXE protein functionality leading to an insufficient NAD (P)HX repair system and the development of clinical features of PEBEL1 syndrome in our patient. To our knowledge, our case is the 21st case of PEBEL1 patient worldwide and the first case in North Africa.</p>","PeriodicalId":56106,"journal":{"name":"Neurogenetics","volume":"23 4","pages":"257-270"},"PeriodicalIF":1.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10048-022-00696-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Progressive encephalopathy with brain edema and/or leukoencephalopathy, PEBEL1, is a severe neurometabolic disorder characterized by rapidly progressive neurologic deterioration associated with a febrile illness. PEBEL1 is a lethal encephalopathy caused by NAXE gene mutations. Here we report a 6-month-old boy with mitochondrial encephalomyopathy from a consanguineous family. Molecular analysis was performed using whole-exome sequencing followed by segregation analysis. In addition, in silico prediction tools and molecular dynamic approaches were used to predict the structural effect of the mutation. Furthermore, molecular docking of the substrate NADP in both wild-type and mutated NAXE protein was carried out. Molecular analysis revealed the presence of the novel homozygous mutation c.641 T > A (p. Ile214Asn) in the NAXE gene, located at the NAD (P)H hydrate epimerase domain. In addition, bioinformatics analyses and molecular dynamics revealed that p. Ile214Asn mutation could affect the structure, stability, and compactness of the NAXE protein. Moreover, the result of the molecular docking showed that the p. Ile214Asn mutation leads to conformational changes in the catalytic cavity, thus modifying interaction with the substrate and restricting its access. We also compared the phenotype of our patient with those of previously reported cases with PEBEL syndrome. All bioinformatics findings provide evidence that the NAXE variant Asn214 disrupts NAXE protein functionality leading to an insufficient NAD (P)HX repair system and the development of clinical features of PEBEL1 syndrome in our patient. To our knowledge, our case is the 21st case of PEBEL1 patient worldwide and the first case in North Africa.
期刊介绍:
Neurogenetics publishes findings that contribute to a better understanding of the genetic basis of normal and abnormal function of the nervous system. Neurogenetic disorders are the main focus of the journal. Neurogenetics therefore includes findings in humans and other organisms that help understand neurological disease mechanisms and publishes papers from many different fields such as biophysics, cell biology, human genetics, neuroanatomy, neurochemistry, neurology, neuropathology, neurosurgery and psychiatry.
All papers submitted to Neurogenetics should be of sufficient immediate importance to justify urgent publication. They should present new scientific results. Data merely confirming previously published findings are not acceptable.