Angelo E. Andres, Andres Mariano, Digamber Rane and Blake R. Peterson*,
{"title":"Quantification of Engagement of Microtubules by Small Molecules in Living Cells by Flow Cytometry","authors":"Angelo E. Andres, Andres Mariano, Digamber Rane and Blake R. Peterson*, ","doi":"10.1021/acsbiomedchemau.2c00031","DOIUrl":null,"url":null,"abstract":"<p >Drugs such as paclitaxel (Taxol) that bind microtubules are widely used for the treatment of cancer. Measurements of the affinity and selectivity of these compounds for their targets are largely based on studies of purified proteins, and only a few quantitative methods for the analysis of interactions of small molecules with microtubules in living cells have been reported. We describe here a novel method for rapidly quantifying the affinities of compounds that bind polymerized tubulin in living HeLa cells. This method uses the fluorescent molecular probe Pacific Blue-GABA-Taxol in conjunction with verapamil to block cellular efflux. Under physiologically relevant conditions of 37 °C, this combination allowed quantification of equilibrium saturation binding of this probe to cellular microtubules (<i>K</i><sub>d</sub> = 1.7 μM) using flow cytometry. Competitive binding of the microtubule stabilizers paclitaxel (cellular <i>K</i><sub>i</sub> = 22 nM), docetaxel (cellular <i>K</i><sub>i</sub> = 16 nM), cabazitaxel (cellular <i>K</i><sub>i</sub> = 6 nM), and ixabepilone (cellular <i>K</i><sub>i</sub> = 10 nM) revealed intracellular affinities for microtubules that closely matched previously reported biochemical affinities. By including a cooperativity factor (α) for curve fitting of allosteric modulators, this probe also allowed quantification of binding (<i>K</i><sub>b</sub>) of the microtubule destabilizers colchicine (<i>K</i><sub>b</sub> = 80 nM, α = 0.08), vinblastine (<i>K</i><sub>b</sub> = 7 nM, α = 0.18), and maytansine (<i>K</i><sub>b</sub> = 3 nM, α = 0.21). Screening of this assay against 1008 NCI diversity compounds identified NSC 93427 as a novel microtubule destabilizer (<i>K</i><sub>b</sub> = 485 nM, α = 0.02), illustrating the potential of this approach for drug discovery.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"2 5","pages":"529–537"},"PeriodicalIF":3.8000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/38/80/bg2c00031.PMC9585582.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Drugs such as paclitaxel (Taxol) that bind microtubules are widely used for the treatment of cancer. Measurements of the affinity and selectivity of these compounds for their targets are largely based on studies of purified proteins, and only a few quantitative methods for the analysis of interactions of small molecules with microtubules in living cells have been reported. We describe here a novel method for rapidly quantifying the affinities of compounds that bind polymerized tubulin in living HeLa cells. This method uses the fluorescent molecular probe Pacific Blue-GABA-Taxol in conjunction with verapamil to block cellular efflux. Under physiologically relevant conditions of 37 °C, this combination allowed quantification of equilibrium saturation binding of this probe to cellular microtubules (Kd = 1.7 μM) using flow cytometry. Competitive binding of the microtubule stabilizers paclitaxel (cellular Ki = 22 nM), docetaxel (cellular Ki = 16 nM), cabazitaxel (cellular Ki = 6 nM), and ixabepilone (cellular Ki = 10 nM) revealed intracellular affinities for microtubules that closely matched previously reported biochemical affinities. By including a cooperativity factor (α) for curve fitting of allosteric modulators, this probe also allowed quantification of binding (Kb) of the microtubule destabilizers colchicine (Kb = 80 nM, α = 0.08), vinblastine (Kb = 7 nM, α = 0.18), and maytansine (Kb = 3 nM, α = 0.21). Screening of this assay against 1008 NCI diversity compounds identified NSC 93427 as a novel microtubule destabilizer (Kb = 485 nM, α = 0.02), illustrating the potential of this approach for drug discovery.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.