A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder.

Q2 Agricultural and Biological Sciences Genomics and Informatics Pub Date : 2022-06-01 Epub Date: 2022-06-30 DOI:10.5808/gi.22008
Sajad Rafiee Komachali, Mozhgan Sheikholeslami, Mansoor Salehi
{"title":"A novel mutation in GJC2 associated with hypomyelinating leukodystrophy type 2 disorder.","authors":"Sajad Rafiee Komachali,&nbsp;Mozhgan Sheikholeslami,&nbsp;Mansoor Salehi","doi":"10.5808/gi.22008","DOIUrl":null,"url":null,"abstract":"<p><p>Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.</p>","PeriodicalId":36591,"journal":{"name":"Genomics and Informatics","volume":"20 2","pages":"e24"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9299563/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genomics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5808/gi.22008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Hypomyelinating leukodystrophy type 2 (HLD2), is an inherited genetic disease of the central nervous system caused by recessive mutations in the gap junction protein gamma 2 (GJC2/GJA12). HLD2 is characterized by nystagmus, developmental delay, motor impairments, ataxia, severe speech problem, and hypomyelination in the brain. The GJC2 sequence encodes connexin 47 protein (Cx47). Connexins are a group of membrane proteins that oligomerize to construct gap junctions protein. In the present study, a novel missense mutation gene c.760G>A (p.Val254Met) was identified in a patient with HLD2 by performing whole exome sequencing. Following the discovery of the new mutation in the proband, we used Sanger sequencing to analyze his affected sibling and parents. Sanger sequencing verified homozygosity of the mutation in the proband and his affected sibling. The autosomal recessive inheritance pattern was confirmed since Sanger sequencing revealed both healthy parents were heterozygous for the mutation. PolyPhen2, SIFT, PROVEAN, and CADD were used to evaluate the function prediction scores of detected mutations. Cx47 is essential for oligodendrocyte function, including adequate myelination and myelin maintenance in humans. Novel mutation p.Val254Met is located in the second extracellular domain of Cx47, both extracellular loops are highly conserved and probably induce intramolecular disulfide interactions. This novel mutation in the Cx47 gene causes oligodendrocyte dysfunction and HLD2 disorder.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
与低髓鞘性白质营养不良2型疾病相关的GJC2新突变
2型低髓鞘性白质营养不良症(HLD2)是一种由间隙连接蛋白γ 2 (GJC2/GJA12)隐性突变引起的中枢神经系统遗传性疾病。HLD2的特点是眼球震颤、发育迟缓、运动障碍、共济失调、严重的语言问题和大脑髓鞘发育低下。GJC2序列编码连接蛋白47 (Cx47)。连接蛋白是一组寡聚形成间隙连接蛋白的膜蛋白。在本研究中,通过对HLD2患者进行全外显子组测序,发现了一种新的错义突变基因c.760G> a (p.Val254Met)。在先证者身上发现新的突变后,我们用桑格测序法分析了他受影响的兄弟姐妹和父母。桑格测序证实了先证者及其患病兄弟姐妹突变的纯合性。常染色体隐性遗传模式被证实,因为Sanger测序显示健康的父母都是杂合突变。使用PolyPhen2、SIFT、PROVEAN和CADD评估检测到的突变的功能预测评分。Cx47对人类少突胶质细胞功能至关重要,包括充分的髓鞘形成和髓磷脂维持。新突变p.Val254Met位于Cx47的第二个胞外结构域,两个胞外环高度保守,可能诱导分子内二硫相互作用。Cx47基因的这种新突变导致少突胶质细胞功能障碍和HLD2疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genomics and Informatics
Genomics and Informatics Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Gut metagenomic analysis of gastric cancer patients reveals Akkermansia, Gammaproteobacteria, and Veillonella microbiota as potential non-invasive biomarkers COVID-19 progression towards ARDS: a genome wide study reveals host factors underlying critical COVID-19. Bioinformatic analyses reveal the prognostic significance and potential role of ankyrin 3 (ANK3) in kidney renal clear cell carcinoma. Comparison of digital PCR platforms using the molecular marker. Single-cell RNA sequencing identifies distinct transcriptomic signatures between PMA/ionomycin- and αCD3/αCD28-activated primary human T cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1