Lei Chen, Xiangyi Wang, Yude Zhu, Fuquan Liu, Laixing Liu, Ning Jiang
{"title":"Effects of miR-211-3p/RHBDD1 axis on cell proliferation, cell cycle progression, and epithelial-mesenchymal transition in glioma.","authors":"Lei Chen, Xiangyi Wang, Yude Zhu, Fuquan Liu, Laixing Liu, Ning Jiang","doi":"10.5114/fn.2022.118186","DOIUrl":null,"url":null,"abstract":"<p><p>This study was designed to elucidate the relationship of miR-211-3p and rhomboid domain containing 1 (RHBDD1) in glioma. Here, we first observed that miR-211-3p directly targets the 3˘-UTR of RHBDD1 in glioma cells using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. Pearson's correlation analysis showed that miR-211-3p expression was negatively correlated with RHBDD1 expression in glioma tissues. CCK-8 assay, flow cytometry, and transwell assay were applied to assess cell proliferation, cell cycle distribution, migration, and invasion. The results showed that RHBDD1 knockdown inhibited cell proliferation, cell cycle G1/S transition, migration, and invasion in two glioma cell lines (U87 and LN-229). Knockdown of miR-211-3p obtained opposite results. Moreover, overexpression of RHBDD1 counteracted suppressive effects of miR-211-3p on glioma cells. Furthermore, decreased expression of CDK4, cyclin D1, N-cadherin, and vimentin as well as increased E-cadherin expression induced by miR-211-3p was reversed by RHBDD1 overexpression. Our results suggested that targeting miR-211-3p/RHBDD1 axis might be a novel effective therapeutic target for glioma treatment.</p>","PeriodicalId":12370,"journal":{"name":"Folia neuropathologica","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia neuropathologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5114/fn.2022.118186","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study was designed to elucidate the relationship of miR-211-3p and rhomboid domain containing 1 (RHBDD1) in glioma. Here, we first observed that miR-211-3p directly targets the 3˘-UTR of RHBDD1 in glioma cells using dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and Western blot analysis. Pearson's correlation analysis showed that miR-211-3p expression was negatively correlated with RHBDD1 expression in glioma tissues. CCK-8 assay, flow cytometry, and transwell assay were applied to assess cell proliferation, cell cycle distribution, migration, and invasion. The results showed that RHBDD1 knockdown inhibited cell proliferation, cell cycle G1/S transition, migration, and invasion in two glioma cell lines (U87 and LN-229). Knockdown of miR-211-3p obtained opposite results. Moreover, overexpression of RHBDD1 counteracted suppressive effects of miR-211-3p on glioma cells. Furthermore, decreased expression of CDK4, cyclin D1, N-cadherin, and vimentin as well as increased E-cadherin expression induced by miR-211-3p was reversed by RHBDD1 overexpression. Our results suggested that targeting miR-211-3p/RHBDD1 axis might be a novel effective therapeutic target for glioma treatment.
期刊介绍:
Folia Neuropathologica is an official journal of the Mossakowski Medical Research Centre Polish Academy of Sciences and the Polish Association of Neuropathologists. The journal publishes original articles and reviews that deal with all aspects of clinical and experimental neuropathology and related fields of neuroscience research. The scope of journal includes surgical and experimental pathomorphology, ultrastructure, immunohistochemistry, biochemistry and molecular biology of the nervous tissue. Papers on surgical neuropathology and neuroimaging are also welcome. The reports in other fields relevant to the understanding of human neuropathology might be considered.