HOMOTOPY CONTINUATION FOR THE SPECTRA OF PERSISTENT LAPLACIANS.

IF 1.7 Q2 MATHEMATICS, APPLIED Foundations of data science (Springfield, Mo.) Pub Date : 2021-12-01 DOI:10.3934/fods.2021017
Xiaoqi Wei, Guo-Wei Wei
{"title":"HOMOTOPY CONTINUATION FOR THE SPECTRA OF PERSISTENT LAPLACIANS.","authors":"Xiaoqi Wei,&nbsp;Guo-Wei Wei","doi":"10.3934/fods.2021017","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>p</i>-persistent <i>q</i>-combinatorial Laplacian defined for a pair of simplicial complexes is a generalization of the <i>q</i>-combinatorial Laplacian. Given a filtration, the spectra of persistent combinatorial Laplacians not only recover the persistent Betti numbers of persistent homology but also provide extra multiscale geometrical information of the data. Paired with machine learning algorithms, the persistent Laplacian has many potential applications in data science. Seeking different ways to find the spectrum of an operator is an active research topic, becoming interesting when ideas are originated from multiple fields. In this work, we explore an alternative approach for the spectrum of persistent Laplacians. As the eigenvalues of a persistent Laplacian matrix are the roots of its characteristic polynomial, one may attempt to find the roots of the characteristic polynomial by homotopy continuation, and thus resolving the spectrum of the corresponding persistent Laplacian. We consider a set of simple polytopes and small molecules to prove the principle that algebraic topology, combinatorial graph, and algebraic geometry can be integrated to understand the shape of data.</p>","PeriodicalId":73054,"journal":{"name":"Foundations of data science (Springfield, Mo.)","volume":"3 4","pages":"677-700"},"PeriodicalIF":1.7000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273002/pdf/nihms-1768199.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of data science (Springfield, Mo.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/fods.2021017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

The p-persistent q-combinatorial Laplacian defined for a pair of simplicial complexes is a generalization of the q-combinatorial Laplacian. Given a filtration, the spectra of persistent combinatorial Laplacians not only recover the persistent Betti numbers of persistent homology but also provide extra multiscale geometrical information of the data. Paired with machine learning algorithms, the persistent Laplacian has many potential applications in data science. Seeking different ways to find the spectrum of an operator is an active research topic, becoming interesting when ideas are originated from multiple fields. In this work, we explore an alternative approach for the spectrum of persistent Laplacians. As the eigenvalues of a persistent Laplacian matrix are the roots of its characteristic polynomial, one may attempt to find the roots of the characteristic polynomial by homotopy continuation, and thus resolving the spectrum of the corresponding persistent Laplacian. We consider a set of simple polytopes and small molecules to prove the principle that algebraic topology, combinatorial graph, and algebraic geometry can be integrated to understand the shape of data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
持久拉普拉斯算子谱的同伦延拓。
对于一对简单复合体定义的p-持久q-组合拉普拉斯算子是对q-组合拉普拉斯算子的推广。经过过滤后,持久组合拉普拉斯算子的谱不仅恢复了持久同调的持久Betti数,而且提供了数据的额外多尺度几何信息。与机器学习算法相结合,持久拉普拉斯在数据科学中有许多潜在的应用。寻找不同的方法来寻找算子的频谱是一个活跃的研究课题,当想法来自多个领域时变得有趣。在这项工作中,我们探索了持久拉普拉斯光谱的另一种方法。由于持久拉普拉斯矩阵的特征值是其特征多项式的根,因此可以尝试用同伦延拓的方法求出特征多项式的根,从而求解相应的持久拉普拉斯矩阵的谱。我们考虑一组简单的多面体和小分子来证明代数拓扑、组合图和代数几何可以结合起来理解数据形状的原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
CHATGPT FOR COMPUTATIONAL TOPOLOGY. PERSISTENT DIRAC OF PATHS ON DIGRAPHS AND HYPERGRAPHS. PERSISTENT PATH LAPLACIAN. Weight set decomposition for weighted rank and rating aggregation: An interpretable and visual decision support tool Hierarchical regularization networks for sparsification based learning on noisy datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1