{"title":"Establishment and characterization of IPS-OGC-C1: a novel induced pluripotent stem cell line from healthy human ovarian granulosa cells.","authors":"Zhiqiang Wang, Xiaojia Hu, Qiufen He, Jingbo Lai, Ruolang Pan, Jing Zheng, Ye Chen","doi":"10.1007/s13577-022-00757-7","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian granulosa cell (OGC) is a critical somatic component of the ovary, which provides physical support and the microenvironment required for the developing oocyte. Human OGCs are easy to obtain and culture as a by-product of follicular aspiration performed during in vitro fertilization (IVF) procedures. Therefore, OGCs offer a potent cell source to generate induced pluripotent stem cells (iPSCs). This study established a novel OGCs-derived iPSC cell line from the follicular fluid of a healthy female donor with a Chinese Han genetic background and named it IPS-OGC-C1. IPS-OGC-C1 was verified for embryonic stem cell morphology, cell marker expression, alkaline phosphatase (AP) activity, transcriptomic profile, and pluripotency capability in developing all three embryonic germ layers in vivo and in vitro.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 5","pages":"1612-1620"},"PeriodicalIF":4.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00757-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Ovarian granulosa cell (OGC) is a critical somatic component of the ovary, which provides physical support and the microenvironment required for the developing oocyte. Human OGCs are easy to obtain and culture as a by-product of follicular aspiration performed during in vitro fertilization (IVF) procedures. Therefore, OGCs offer a potent cell source to generate induced pluripotent stem cells (iPSCs). This study established a novel OGCs-derived iPSC cell line from the follicular fluid of a healthy female donor with a Chinese Han genetic background and named it IPS-OGC-C1. IPS-OGC-C1 was verified for embryonic stem cell morphology, cell marker expression, alkaline phosphatase (AP) activity, transcriptomic profile, and pluripotency capability in developing all three embryonic germ layers in vivo and in vitro.
期刊介绍:
Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well.
Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format.
Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.