Sofia S. Mendes, Joana Marques, Edit Mesterházy, Jan Straetener, Melina Arts, Teresa Pissarro, Jorgina Reginold, Anne Berscheid, Jan Bornikoel, Robert M. Kluj, Christoph Mayer, Filipp Oesterhelt, Sofia Friães, Beatriz Royo, Tanja Schneider, Heike Brötz-Oesterhelt*, Carlos C. Romão* and Lígia M. Saraiva*,
{"title":"Synergetic Antimicrobial Activity and Mechanism of Clotrimazole-Linked CO-Releasing Molecules","authors":"Sofia S. Mendes, Joana Marques, Edit Mesterházy, Jan Straetener, Melina Arts, Teresa Pissarro, Jorgina Reginold, Anne Berscheid, Jan Bornikoel, Robert M. Kluj, Christoph Mayer, Filipp Oesterhelt, Sofia Friães, Beatriz Royo, Tanja Schneider, Heike Brötz-Oesterhelt*, Carlos C. Romão* and Lígia M. Saraiva*, ","doi":"10.1021/acsbiomedchemau.2c00007","DOIUrl":null,"url":null,"abstract":"<p >Several metal-based carbon monoxide-releasing molecules (CORMs) are active CO donors with established antibacterial activity. Among them, CORM conjugates with azole antibiotics of type [Mn(CO)<sub>3</sub>(2,2′-bipyridyl)(azole)]<sup>+</sup> display important synergies against several microbes. We carried out a structure–activity relationship study based upon the lead structure of [Mn(CO)<sub>3</sub>(Bpy)(Ctz)]<sup>+</sup> by producing clotrimazole (Ctz) conjugates with varying metal and ligands. We concluded that the nature of the bidentate ligand strongly influences the bactericidal activity, with the substitution of bipyridyl by small bicyclic ligands leading to highly active clotrimazole conjugates. On the contrary, the metal did not influence the activity. We found that conjugate [Re(CO)<sub>3</sub>(Bpy)(Ctz)]<sup>+</sup> is more than the sum of its parts: while precursor [Re(CO)<sub>3</sub>(Bpy)Br] has no antibacterial activity and clotrimazole shows only moderate minimal inhibitory concentrations, the potency of [Re(CO)<sub>3</sub>(Bpy)(Ctz)]<sup>+</sup> is one order of magnitude higher than that of clotrimazole, and the spectrum of bacterial target species includes Gram-positive and Gram-negative bacteria. The addition of [Re(CO)<sub>3</sub>(Bpy)(Ctz)]<sup>+</sup> to <i>Staphylococcus aureus</i> causes a general impact on the membrane topology, has inhibitory effects on peptidoglycan biosynthesis, and affects energy functions. The mechanism of action of this kind of CORM conjugates involves a sequence of events initiated by membrane insertion, followed by membrane disorganization, inhibition of peptidoglycan synthesis, CO release, and break down of the membrane potential. These results suggest that conjugation of CORMs to known antibiotics may produce useful structures with synergistic effects that increase the conjugate’s activity relative to that of the antibiotic alone.</p>","PeriodicalId":29802,"journal":{"name":"ACS Bio & Med Chem Au","volume":"2 4","pages":"419–436"},"PeriodicalIF":3.8000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/64/75/bg2c00007.PMC9389576.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Bio & Med Chem Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsbiomedchemau.2c00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 11
Abstract
Several metal-based carbon monoxide-releasing molecules (CORMs) are active CO donors with established antibacterial activity. Among them, CORM conjugates with azole antibiotics of type [Mn(CO)3(2,2′-bipyridyl)(azole)]+ display important synergies against several microbes. We carried out a structure–activity relationship study based upon the lead structure of [Mn(CO)3(Bpy)(Ctz)]+ by producing clotrimazole (Ctz) conjugates with varying metal and ligands. We concluded that the nature of the bidentate ligand strongly influences the bactericidal activity, with the substitution of bipyridyl by small bicyclic ligands leading to highly active clotrimazole conjugates. On the contrary, the metal did not influence the activity. We found that conjugate [Re(CO)3(Bpy)(Ctz)]+ is more than the sum of its parts: while precursor [Re(CO)3(Bpy)Br] has no antibacterial activity and clotrimazole shows only moderate minimal inhibitory concentrations, the potency of [Re(CO)3(Bpy)(Ctz)]+ is one order of magnitude higher than that of clotrimazole, and the spectrum of bacterial target species includes Gram-positive and Gram-negative bacteria. The addition of [Re(CO)3(Bpy)(Ctz)]+ to Staphylococcus aureus causes a general impact on the membrane topology, has inhibitory effects on peptidoglycan biosynthesis, and affects energy functions. The mechanism of action of this kind of CORM conjugates involves a sequence of events initiated by membrane insertion, followed by membrane disorganization, inhibition of peptidoglycan synthesis, CO release, and break down of the membrane potential. These results suggest that conjugation of CORMs to known antibiotics may produce useful structures with synergistic effects that increase the conjugate’s activity relative to that of the antibiotic alone.
期刊介绍:
ACS Bio & Med Chem Au is a broad scope open access journal which publishes short letters comprehensive articles reviews and perspectives in all aspects of biological and medicinal chemistry. Studies providing fundamental insights or describing novel syntheses as well as clinical or other applications-based work are welcomed.This broad scope includes experimental and theoretical studies on the chemical physical mechanistic and/or structural basis of biological or cell function in all domains of life. It encompasses the fields of chemical biology synthetic biology disease biology cell biology agriculture and food natural products research nucleic acid biology neuroscience structural biology and biophysics.The journal publishes studies that pertain to a broad range of medicinal chemistry including compound design and optimization biological evaluation molecular mechanistic understanding of drug delivery and drug delivery systems imaging agents and pharmacology and translational science of both small and large bioactive molecules. Novel computational cheminformatics and structural studies for the identification (or structure-activity relationship analysis) of bioactive molecules ligands and their targets are also welcome. The journal will consider computational studies applying established computational methods but only in combination with novel and original experimental data (e.g. in cases where new compounds have been designed and tested).Also included in the scope of the journal are articles relating to infectious diseases research on pathogens host-pathogen interactions therapeutics diagnostics vaccines drug-delivery systems and other biomedical technology development pertaining to infectious diseases.