{"title":"Low-Consumption Synaptic Devices Based on Gate-All-Around InAs Nanowire Field-Effect Transistors","authors":"Chaofei Zha, Wei Luo, Xia Zhang, Xin Yan, Xiaomin Ren","doi":"10.1186/s11671-022-03740-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, an artificial electronic synaptic device based on gate-all-around InAs nanowire field-effect transistor is proposed and analyzed. The deposited oxide layer (In<sub>2</sub>O<sub>3</sub>) on the InAs nanowire surface serves as a charge trapping layer for information storage. The gate voltage pulse serves as stimuli of the presynaptic membrane, and the drain current and channel conductance are treated as post-synaptic current and weights of the postsynaptic membrane, respectively. At low gate voltages, the device simulates synaptic behaviors including short-term depression and long-term depression. By increasing the amplitude and quantity of gate voltage pulses, the transition from short-term depression to long-term potentiation can be achieved. The device exhibits a large memory window of over 1 V and a minimal energy consumption of 12.5 pJ per synaptic event. This work may pave the way for the development of miniaturized low-consumption synaptic devices and related neuromorphic systems.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"17 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613821/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-022-03740-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, an artificial electronic synaptic device based on gate-all-around InAs nanowire field-effect transistor is proposed and analyzed. The deposited oxide layer (In2O3) on the InAs nanowire surface serves as a charge trapping layer for information storage. The gate voltage pulse serves as stimuli of the presynaptic membrane, and the drain current and channel conductance are treated as post-synaptic current and weights of the postsynaptic membrane, respectively. At low gate voltages, the device simulates synaptic behaviors including short-term depression and long-term depression. By increasing the amplitude and quantity of gate voltage pulses, the transition from short-term depression to long-term potentiation can be achieved. The device exhibits a large memory window of over 1 V and a minimal energy consumption of 12.5 pJ per synaptic event. This work may pave the way for the development of miniaturized low-consumption synaptic devices and related neuromorphic systems.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.