Modified Item-Fit Indices for Dichotomous IRT Models with Missing Data.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2022-11-01 Epub Date: 2022-09-19 DOI:10.1177/01466216221125176
Xue Zhang, Chun Wang
{"title":"Modified Item-Fit Indices for Dichotomous IRT Models with Missing Data.","authors":"Xue Zhang,&nbsp;Chun Wang","doi":"10.1177/01466216221125176","DOIUrl":null,"url":null,"abstract":"<p><p>Item-level fit analysis not only serves as a complementary check to global fit analysis, it is also essential in scale development because the fit results will guide item revision and/or deletion (Liu & Maydeu-Olivares, 2014). During data collection, missing response data may likely happen due to various reasons. Chi-square-based item fit indices (e.g., Yen's <i>Q</i> <sub><i>1</i></sub> , McKinley and Mill's <i>G</i> <sup><i>2</i></sup> , Orlando and Thissen's <i>S-X</i> <sup><i>2</i></sup> and <i>S-G</i> <sup><i>2</i></sup> ) are the most widely used statistics to assess item-level fit. However, the role of total scores with complete data used in <i>S-X</i> <sup><i>2</i></sup> and <i>S-G</i> <sup><i>2</i></sup> is different from that with incomplete data. As a result, <i>S-X</i> <sup><i>2</i></sup> and <i>S-G</i> <sup><i>2</i></sup> cannot handle incomplete data directly. To this end, we propose several modified versions of <i>S-X</i> <sup><i>2</i></sup> and <i>S-G</i> <sup><i>2</i></sup> to evaluate item-level fit when response data are incomplete, named as <i>M</i> <sub><i>impute</i></sub> <i>-X</i> <sup><i>2</i></sup> and <i>M</i> <sub><i>impute</i></sub> <i>-G</i> <sup><i>2</i></sup> , of which the subscript \"<i>impute</i>\" denotes different imputation methods. Instead of using observed total scores for grouping, the new indices rely on imputed total scores by either a single imputation method or three multiple imputation methods (i.e., two-way with normally distributed errors, corrected item-mean substitution with normally distributed errors and response function imputation). The new indices are equivalent to <i>S-X</i> <sup><i>2</i></sup> and <i>S-G</i> <sup><i>2</i></sup> when response data are complete. Their performances are evaluated and compared via simulation studies; the manipulated factors include test length, sources of misfit, misfit proportion, and missing proportion. The results from simulation studies are consistent with those of Orlando and Thissen (2000, 2003), and different indices are recommended under different conditions.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574083/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221125176","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Item-level fit analysis not only serves as a complementary check to global fit analysis, it is also essential in scale development because the fit results will guide item revision and/or deletion (Liu & Maydeu-Olivares, 2014). During data collection, missing response data may likely happen due to various reasons. Chi-square-based item fit indices (e.g., Yen's Q 1 , McKinley and Mill's G 2 , Orlando and Thissen's S-X 2 and S-G 2 ) are the most widely used statistics to assess item-level fit. However, the role of total scores with complete data used in S-X 2 and S-G 2 is different from that with incomplete data. As a result, S-X 2 and S-G 2 cannot handle incomplete data directly. To this end, we propose several modified versions of S-X 2 and S-G 2 to evaluate item-level fit when response data are incomplete, named as M impute -X 2 and M impute -G 2 , of which the subscript "impute" denotes different imputation methods. Instead of using observed total scores for grouping, the new indices rely on imputed total scores by either a single imputation method or three multiple imputation methods (i.e., two-way with normally distributed errors, corrected item-mean substitution with normally distributed errors and response function imputation). The new indices are equivalent to S-X 2 and S-G 2 when response data are complete. Their performances are evaluated and compared via simulation studies; the manipulated factors include test length, sources of misfit, misfit proportion, and missing proportion. The results from simulation studies are consistent with those of Orlando and Thissen (2000, 2003), and different indices are recommended under different conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有缺失数据的二分IRT模型的修正项目拟合指数。
项目级拟合分析不仅是对全局拟合分析的补充检查,而且在规模开发中也至关重要,因为拟合结果将指导项目的修订和/或删除(Liu&Maydeu-Olivares,2014)。在数据收集过程中,由于各种原因,可能会出现响应数据丢失的情况。基于卡方的项目拟合指数(例如,Yen的Q1、McKinley和Mill的G2、Orlando和Thissen的s-X2和s-G2)是评估项目水平拟合的最广泛使用的统计数据。然而,在S-X2和S-G2中使用的数据完整的总分与数据不完整的总分的作用不同。因此,S-X2和S-G2不能直接处理不完整的数据。为此,我们提出了S-X2和S-G2的几个修改版本,以评估响应数据不完整时的项目水平拟合,分别命名为M估算-X2和M估算-G2,其中下标“估算”表示不同的估算方法。新指数不是使用观察到的总分进行分组,而是依赖于通过单一插补方法或三种多重插补方法(即具有正态分布误差的双向插补、具有正态分配误差的校正项目平均值替代和响应函数插补)的插补总分。当响应数据完整时,新指标等效于S-X2和S-G2。通过模拟研究对它们的性能进行评估和比较;操纵因素包括测试长度、失配源、失配比例和失配比例。模拟研究的结果与Orlando和Thissen(20002003)的结果一致,并在不同的条件下推荐了不同的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1