{"title":"On the importance of feedback for categorization: Revisiting category learning experiments using an adaptive filter model.","authors":"Nicolás Marchant, Sergio E Chaigneau","doi":"10.1037/xan0000339","DOIUrl":null,"url":null,"abstract":"<p><p>Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature. (PsycInfo Database Record (c) 2022 APA, all rights reserved).</p>","PeriodicalId":54259,"journal":{"name":"Journal of Experimental Psychology-Animal Learning and Cognition","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology-Animal Learning and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xan0000339","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Associative accounts of category learning have been, for the most part, abandoned in favor of cognitive explanations (e.g., similarity, explicit rules). In the current work, we implement an Adaptive Linear Filter (ALF) closely related to the Rescorla and Wagner learning rule, and use it to tackle three learning tasks that pose challenges to an associative view of category learning. Across three computational simulations, we show that the ALF is in fact able to make the predictions that seemed problematic. Notably, in our simulations we use exactly the same model and specifications, attesting to the generality of our account. We discuss the consequences of our findings for the category learning literature. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
期刊介绍:
The Journal of Experimental Psychology: Animal Learning and Cognition publishes experimental and theoretical studies concerning all aspects of animal behavior processes.