Artificial intelligence enhanced ultrasound (AI-US) in a severe obese parturient: a case report.

IF 3.4 Q2 Medicine Ultrasound Journal Pub Date : 2022-08-03 DOI:10.1186/s13089-022-00283-5
Christian Compagnone, Giulia Borrini, Alberto Calabrese, Mario Taddei, Valentina Bellini, Elena Bignami
{"title":"Artificial intelligence enhanced ultrasound (AI-US) in a severe obese parturient: a case report.","authors":"Christian Compagnone,&nbsp;Giulia Borrini,&nbsp;Alberto Calabrese,&nbsp;Mario Taddei,&nbsp;Valentina Bellini,&nbsp;Elena Bignami","doi":"10.1186/s13089-022-00283-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuraxial anesthesia in obese parturients can be challenging due to anatomical and physiological modifications secondary to pregnancy; this led to growing popularity of spine ultrasound in this population for easing landmark identification and procedure execution. Integration of Artificial Intelligence with ultrasound (AI-US) for image enhancement and analysis has increased clinicians' ability to localize vertebral structures in patients with challenging anatomical conformation.</p><p><strong>Case presentation: </strong>We present the case of a parturient with extremely severe obesity, with a Body Mass Index (BMI) = 64.5 kg/m<sup>2</sup>, in which the AI-Enabled Image Recognition allowed a successful placing of an epidural catheter.</p><p><strong>Conclusions: </strong>Benefits gained from AI-US implementation are multiple: immediate recognition of anatomical structures leads to increased first-attempt success rate, making easier the process of spinal anesthesia execution compared to traditional palpation methods, reducing needle placement time for spinal anesthesia and predicting best needle direction and target structure depth in peridural anesthesia.</p>","PeriodicalId":36911,"journal":{"name":"Ultrasound Journal","volume":" ","pages":"34"},"PeriodicalIF":3.4000,"publicationDate":"2022-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9349326/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasound Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13089-022-00283-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 4

Abstract

Background: Neuraxial anesthesia in obese parturients can be challenging due to anatomical and physiological modifications secondary to pregnancy; this led to growing popularity of spine ultrasound in this population for easing landmark identification and procedure execution. Integration of Artificial Intelligence with ultrasound (AI-US) for image enhancement and analysis has increased clinicians' ability to localize vertebral structures in patients with challenging anatomical conformation.

Case presentation: We present the case of a parturient with extremely severe obesity, with a Body Mass Index (BMI) = 64.5 kg/m2, in which the AI-Enabled Image Recognition allowed a successful placing of an epidural catheter.

Conclusions: Benefits gained from AI-US implementation are multiple: immediate recognition of anatomical structures leads to increased first-attempt success rate, making easier the process of spinal anesthesia execution compared to traditional palpation methods, reducing needle placement time for spinal anesthesia and predicting best needle direction and target structure depth in peridural anesthesia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能增强超声(AI-US)在重度肥胖产妇中的应用1例。
背景:由于妊娠后的解剖和生理改变,肥胖孕妇的轴向麻醉具有挑战性;这导致脊柱超声在这一人群中越来越受欢迎,以简化地标识别和程序执行。人工智能与超声(AI-US)图像增强和分析的集成提高了临床医生在具有挑战性解剖构象的患者中定位椎体结构的能力。病例介绍:我们报告了一例极度肥胖的孕妇,其体重指数(BMI) = 64.5 kg/m2,其中人工智能支持的图像识别允许成功放置硬膜外导管。结论:AI-US实施的好处是多方面的:解剖结构的即时识别增加了首次尝试的成功率,与传统的触诊方法相比,使脊髓麻醉的执行过程更容易,减少了脊髓麻醉的置针时间,并预测了硬膜外麻醉的最佳针头方向和目标结构深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasound Journal
Ultrasound Journal Health Professions-Radiological and Ultrasound Technology
CiteScore
6.80
自引率
2.90%
发文量
45
审稿时长
22 weeks
期刊最新文献
VExUS: common misconceptions, clinical use and future directions. Decoding VExUS: a practical guide for excelling in point-of-care ultrasound assessment of venous congestion. Quantitative lung ultrasound findings correlate with radial alveolar count in experimental bronchopulmonary dysplasia. Tele-education in point-of-care ultrasound training. Comparison of 6 handheld ultrasound devices by point-of-care ultrasound experts: a cross-sectional study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1