Inhibition of Cerebral Ischemia/Reperfusion Injury by MSCs-Derived Small Extracellular Vesicles in Rodent Models: A Systematic Review and Meta-Analysis.

IF 3.1 4区 医学 Q2 Medicine Neural Plasticity Pub Date : 2022-10-06 eCollection Date: 2022-01-01 DOI:10.1155/2022/3933252
Lei Zhang, Chaoying Pei, Dan Hou, Guoshuai Yang, Dan Yu
{"title":"Inhibition of Cerebral Ischemia/Reperfusion Injury by MSCs-Derived Small Extracellular Vesicles in Rodent Models: A Systematic Review and Meta-Analysis.","authors":"Lei Zhang,&nbsp;Chaoying Pei,&nbsp;Dan Hou,&nbsp;Guoshuai Yang,&nbsp;Dan Yu","doi":"10.1155/2022/3933252","DOIUrl":null,"url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have shown great therapeutic potential in cerebral ischemia-reperfusion injury (CIRI). In this study, we firstly performed a systematic review to evaluate the efficacy of MSCs-derived sEV for experimental cerebral ischemia/reperfusion injury. 24 studies were identified by searching 8 databases from January 2012 to August 2022. The methodological quality was assessed by using the SYRCLE 's risk of bias tool for animal studies. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 9 in a total of ten points. Meta-analyses showed that MSCs-derived sEVs could effectively alleviate neurological impairment scores, reduced the volume of cerebral infarction and brain water content, and attenuated neuronal apoptosis. Additionally, the possible mechanisms of MSCs-derived sEVs for attenuating neuronal apoptosis were inhibiting microglia-mediated neuroinflammation. Thus, MSCs-derived sEVs might be regarded as a novel insight for cerebral ischemic stroke. However, further mechanistic studies, therapeutic safety, and clinical trials are required. Systematic review registration. PROSPERO CRD42022312227.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"3933252"},"PeriodicalIF":3.1000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633211/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2022/3933252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

Abstract

Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have shown great therapeutic potential in cerebral ischemia-reperfusion injury (CIRI). In this study, we firstly performed a systematic review to evaluate the efficacy of MSCs-derived sEV for experimental cerebral ischemia/reperfusion injury. 24 studies were identified by searching 8 databases from January 2012 to August 2022. The methodological quality was assessed by using the SYRCLE 's risk of bias tool for animal studies. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 9 in a total of ten points. Meta-analyses showed that MSCs-derived sEVs could effectively alleviate neurological impairment scores, reduced the volume of cerebral infarction and brain water content, and attenuated neuronal apoptosis. Additionally, the possible mechanisms of MSCs-derived sEVs for attenuating neuronal apoptosis were inhibiting microglia-mediated neuroinflammation. Thus, MSCs-derived sEVs might be regarded as a novel insight for cerebral ischemic stroke. However, further mechanistic studies, therapeutic safety, and clinical trials are required. Systematic review registration. PROSPERO CRD42022312227.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鼠模型中mscs来源的细胞外小泡对脑缺血/再灌注损伤的抑制作用:系统综述和荟萃分析
间充质干细胞(MSCs)分泌的小细胞外囊泡(sev)在脑缺血再灌注损伤(CIRI)中显示出巨大的治疗潜力。在本研究中,我们首先对mscs源性sEV治疗实验性脑缺血再灌注损伤的疗效进行了系统评价。从2012年1月至2022年8月,通过检索8个数据库,确定了24项研究。方法学质量通过使用cycle的动物研究偏倚风险工具进行评估。所有数据采用RevMan 5.3软件进行分析。因此,学习质量的得分在3到9之间,总分为10分。meta分析显示,mscs衍生的sev可有效减轻神经功能障碍评分,减少脑梗死体积和脑含水量,减轻神经元凋亡。此外,mscs衍生的sev减轻神经元凋亡的可能机制是抑制小胶质细胞介导的神经炎症。因此,mscs衍生的sev可能被视为缺血性脑卒中的新见解。然而,需要进一步的机制研究、治疗安全性和临床试验。系统审查注册。普洛斯彼罗CRD42022312227。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Plasticity
Neural Plasticity Neuroscience-Neurology
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.
期刊最新文献
Modulation of High-Frequency rTMS on Reward Circuitry in Individuals with Nicotine Dependence: A Preliminary fMRI Study. Identifying ADHD-Related Abnormal Functional Connectivity with a Graph Convolutional Neural Network The Application of tDCS to Treat Pain and Psychocognitive Symptoms in Cancer Patients: A Scoping Review Clinical Comparison between HD-tDCS and tDCS for Improving Upper Limb Motor Function: A Randomized, Double-Blinded, Sham-Controlled Trial The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1