Establishment and characterization of NCC-MFS6-C1: a novel patient-derived cell line of myxofibrosarcoma.

IF 4.3 3区 生物学 Human Cell Pub Date : 2022-11-01 Epub Date: 2022-08-10 DOI:10.1007/s13577-022-00749-7
Yuki Yoshimatsu, Rei Noguchi, Yooksil Sin, Ryuto Tsuchiya, Takuya Ono, Taro Akiyama, Chiaki Sato, Eisuke Kobayashi, Naoki Kojima, Akihiko Yoshida, Akira Kawai, Tadashi Kondo
{"title":"Establishment and characterization of NCC-MFS6-C1: a novel patient-derived cell line of myxofibrosarcoma.","authors":"Yuki Yoshimatsu,&nbsp;Rei Noguchi,&nbsp;Yooksil Sin,&nbsp;Ryuto Tsuchiya,&nbsp;Takuya Ono,&nbsp;Taro Akiyama,&nbsp;Chiaki Sato,&nbsp;Eisuke Kobayashi,&nbsp;Naoki Kojima,&nbsp;Akihiko Yoshida,&nbsp;Akira Kawai,&nbsp;Tadashi Kondo","doi":"10.1007/s13577-022-00749-7","DOIUrl":null,"url":null,"abstract":"<p><p>Myxofibrosarcoma (MFS) is a rare and aggressive mesenchymal malignancy characterized by complex karyotypes with heterogeneous clinical features. The standard treatment for primary MFS is curative resection; however, the utility of systemic chemotherapy and radiotherapy has not been established. Although patient-derived cancer cell lines are a key bioresource for developing novel therapies, the number of MFS cell lines available from public cell banks is limited by the rarity of the disease, and large-scale drug screening has not yet been performed. To address this issue, we aimed to establish and characterize a novel MFS cell line. We successfully established a cell line, NCC-MFS6-C1, which harbors genetic abnormalities common in MFS and exhibits aggressive phenotypes such as continuous growth, spheroid formation, and invasion in tissue culture conditions. We performed drug screening using NCC-MFS6-C1 along with five MFS cell lines established in our laboratory and clarified the response spectrum of 214 existing anticancer agents. We found that two anticancer agents, gemcitabine and romidepsin, showed considerable antiproliferative effects, and these observations were concordant with the findings of our previous report, in which these agents attenuated the proliferation of five previously reported MFS cell lines. We conclude that NCC-MFS6-C1 is a useful resource for studying MFS.</p>","PeriodicalId":13228,"journal":{"name":"Human Cell","volume":"35 6","pages":"1993-2001"},"PeriodicalIF":4.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13577-022-00749-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Myxofibrosarcoma (MFS) is a rare and aggressive mesenchymal malignancy characterized by complex karyotypes with heterogeneous clinical features. The standard treatment for primary MFS is curative resection; however, the utility of systemic chemotherapy and radiotherapy has not been established. Although patient-derived cancer cell lines are a key bioresource for developing novel therapies, the number of MFS cell lines available from public cell banks is limited by the rarity of the disease, and large-scale drug screening has not yet been performed. To address this issue, we aimed to establish and characterize a novel MFS cell line. We successfully established a cell line, NCC-MFS6-C1, which harbors genetic abnormalities common in MFS and exhibits aggressive phenotypes such as continuous growth, spheroid formation, and invasion in tissue culture conditions. We performed drug screening using NCC-MFS6-C1 along with five MFS cell lines established in our laboratory and clarified the response spectrum of 214 existing anticancer agents. We found that two anticancer agents, gemcitabine and romidepsin, showed considerable antiproliferative effects, and these observations were concordant with the findings of our previous report, in which these agents attenuated the proliferation of five previously reported MFS cell lines. We conclude that NCC-MFS6-C1 is a useful resource for studying MFS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NCC-MFS6-C1:一种新的黏液纤维肉瘤患者来源细胞系的建立和表征。
黏液纤维肉瘤(MFS)是一种罕见的侵袭性间质恶性肿瘤,具有复杂的核型和异质性的临床特征。原发性MFS的标准治疗是根治性切除;然而,全身化疗和放疗的效用尚未确定。尽管患者来源的癌细胞系是开发新疗法的关键生物资源,但由于这种疾病的罕见性,公共细胞库中可获得的MFS细胞系数量有限,而且尚未进行大规模的药物筛选。为了解决这个问题,我们旨在建立一种新的MFS细胞系并对其进行表征。我们成功地建立了一个细胞系NCC-MFS6-C1,该细胞系含有MFS中常见的遗传异常,并在组织培养条件下表现出侵袭性表型,如连续生长,球状形成和侵袭。我们使用NCC-MFS6-C1和我们实验室建立的5个MFS细胞系进行药物筛选,并明确了214种现有抗癌药物的反应谱。我们发现两种抗癌药物,吉西他滨和罗米地辛,显示出相当大的抗增殖作用,这些观察结果与我们之前报道的结果一致,这些药物减弱了先前报道的5种MFS细胞系的增殖。我们认为NCC-MFS6-C1是研究MFS的有用资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Human Cell
Human Cell 生物-细胞生物学
CiteScore
6.60
自引率
2.30%
发文量
176
期刊介绍: Human Cell is the official English-language journal of the Japan Human Cell Society. The journal serves as a forum for international research on all aspects of the human cell, encompassing not only cell biology but also pathology, cytology, and oncology, including clinical oncology. Embryonic stem cells derived from animals, regenerative medicine using animal cells, and experimental animal models with implications for human diseases are covered as well. Submissions in any of the following categories will be considered: Research Articles, Cell Lines, Rapid Communications, Reviews, and Letters to the Editor. A brief clinical case report focusing on cellular responses to pathological insults in human studies may also be submitted as a Letter to the Editor in a concise and short format. Not only basic scientists but also gynecologists, oncologists, and other clinical scientists are welcome to submit work expressing new ideas or research using human cells.
期刊最新文献
PROX1 is a regulator of neuroendocrine-related gene expression in lung carcinoid Establishment and characterization of TK-ALCL1: a novel NPM-ALK-positive anaplastic large-cell lymphoma cell line. Overexpressing Bcl-2 enhances murine chimeric antigen receptor T cell therapy against solid tumor MicroRNA-322-5p targeting Smurf2 regulates the TGF-β/Smad pathway to protect cardiac function and inhibit myocardial infarction. Genetic diversity among the present Japanese population: evidence from genotyping of human cell lines established in Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1