Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI.

Dongren Yao, Jing Sui, Erkun Yang, Pew-Thian Yap, Dinggang Shen, Mingxia Liu
{"title":"Temporal-Adaptive Graph Convolutional Network for Automated Identification of Major Depressive Disorder Using Resting-State fMRI.","authors":"Dongren Yao,&nbsp;Jing Sui,&nbsp;Erkun Yang,&nbsp;Pew-Thian Yap,&nbsp;Dinggang Shen,&nbsp;Mingxia Liu","doi":"10.1007/978-3-030-59861-7_1","DOIUrl":null,"url":null,"abstract":"<p><p>Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":" ","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645786/pdf/nihms-1822329.pdf","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-59861-7_1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Extensive studies focus on analyzing human brain functional connectivity from a network perspective, in which each network contains complex graph structures. Based on resting-state functional MRI (rs-fMRI) data, graph convolutional networks (GCNs) enable comprehensive mapping of brain functional connectivity (FC) patterns to depict brain activities. However, existing studies usually characterize static properties of the FC patterns, ignoring the time-varying dynamic information. In addition, previous GCN methods generally use fixed group-level (e.g., patients or controls) representation of FC networks, and thus, cannot capture subject-level FC specificity. To this end, we propose a Temporal-Adaptive GCN (TAGCN) framework that can not only take advantage of both spatial and temporal information using resting-state FC patterns and time-series but also explicitly characterize subject-level specificity of FC patterns. Specifically, we first segment each ROI-based time-series into multiple overlapping windows, then employ an adaptive GCN to mine topological information. We further model the temporal patterns for each ROI along time to learn the periodic brain status changes. Experimental results on 533 major depressive disorder (MDD) and health control (HC) subjects demonstrate that the proposed TAGCN outperforms several state-of-the-art methods in MDD vs. HC classification, and also can be used to capture dynamic FC alterations and learn valid graph representations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于静息状态fMRI的时间自适应图卷积网络自动识别重度抑郁症。
广泛的研究集中在从网络的角度分析人脑功能连接,其中每个网络都包含复杂的图结构。基于静息状态功能MRI (rs-fMRI)数据,图卷积网络(GCNs)能够全面映射脑功能连接(FC)模式来描述大脑活动。然而,现有的研究通常只描述FC模式的静态特性,而忽略了随时间变化的动态信息。此外,以前的GCN方法通常使用固定的组级(例如,患者或对照组)FC网络表示,因此无法捕获受试者级FC特异性。为此,我们提出了一个时间自适应GCN (TAGCN)框架,该框架不仅可以利用静息状态FC模式和时间序列的空间和时间信息,还可以明确表征FC模式的主题级别特异性。具体来说,我们首先将每个基于roi的时间序列分割成多个重叠的窗口,然后使用自适应GCN挖掘拓扑信息。我们进一步对每个ROI的时间模式进行建模,以了解周期性的大脑状态变化。对533名重度抑郁症(MDD)和健康控制(HC)受试者的实验结果表明,所提出的TAGCN在MDD和HC分类方面优于几种最先进的方法,也可用于捕获动态FC变化和学习有效的图表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images. Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MoViT: Memorizing Vision Transformers for Medical Image Analysis. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1