Ultra-short Echo-time MR Angiography Combined with a Modified Signal Targeting Alternating Radio Frequency with Asymmetric Inversion Slabs Technique to Assess Visceral Artery Aneurysm after Coil Embolization.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-01-01 Epub Date: 2022-11-17 DOI:10.2463/mrms.tn.2022-0063
Kohei Hamamoto, Emiko Chiba, Noriko Oyama-Manabe, Hironao Yuzawa, Hiromi Edo, Yohsuke Suyama, Hiroshi Shinmoto
{"title":"Ultra-short Echo-time MR Angiography Combined with a Modified Signal Targeting Alternating Radio Frequency with Asymmetric Inversion Slabs Technique to Assess Visceral Artery Aneurysm after Coil Embolization.","authors":"Kohei Hamamoto, Emiko Chiba, Noriko Oyama-Manabe, Hironao Yuzawa, Hiromi Edo, Yohsuke Suyama, Hiroshi Shinmoto","doi":"10.2463/mrms.tn.2022-0063","DOIUrl":null,"url":null,"abstract":"<p><p>Contrast-enhanced CT and MR angiography are widely used for follow-up of visceral artery aneurysms after coil embolization. However, potential adverse reactions to contrast agents and image deterioration due to susceptibility artifacts from the coils are major drawbacks of these modalities. Herein, we introduced a novel non-contrast-enhanced MR angiography technique using ultra-short TE combined with a modified signal targeting alternating radio frequency with asymmetric inversion slabs, which could provide a serial hemodynamic vascular image with fewer susceptibility artifacts for follow-up after coil embolization.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"110-121"},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10838713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2463/mrms.tn.2022-0063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Contrast-enhanced CT and MR angiography are widely used for follow-up of visceral artery aneurysms after coil embolization. However, potential adverse reactions to contrast agents and image deterioration due to susceptibility artifacts from the coils are major drawbacks of these modalities. Herein, we introduced a novel non-contrast-enhanced MR angiography technique using ultra-short TE combined with a modified signal targeting alternating radio frequency with asymmetric inversion slabs, which could provide a serial hemodynamic vascular image with fewer susceptibility artifacts for follow-up after coil embolization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超短回波时间磁共振血管造影结合改良信号定向交替射频与不对称反转平板技术评估线圈栓塞术后的内脏动脉瘤
对比增强 CT 和 MR 血管造影术被广泛用于线圈栓塞术后内脏动脉瘤的随访。然而,造影剂的潜在不良反应和线圈产生的易感伪影导致的图像恶化是这些模式的主要缺点。在此,我们介绍了一种新型的非对比度增强磁共振血管造影技术,该技术采用超短TE,结合非对称反转板交替射频的改良信号,可提供连续的血流动力学血管图像,减少线圈栓塞术后随访的易感伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Nanoliposomal Co-Delivery of AR-PROTAC and NFKBIZ siRNA for Synergistic Therapy of Androgenetic Alopecia. Self-Integrating Multifunctional Amyloidogenic Protein-Fenugreek Composite Hydrogel Patch and Ointment for Accelerated Deep Muscle Wound Healing in Rabbit Model. Skin Substitutes: Ushering in a New Era of Transition from Traditional Dressings to Bioprinted Scaffolds. Reversible Assembly of Virus-Like Particles (VLPs) into Higher-Order Structures Controlled by Oxidation and Reduction of Linker Protein. Dual-Functional Porous UHMWPE Implant Eliminates Staphylococcus aureus Infection and Induces Osteogenesis in a Critical-Sized Segmental Femoral Defect Model in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1