TemporalGSSA: A numerically robust R-wrapper to facilitate computation of a metabolite-specific and simulation time-dependent trajectory from stochastic simulation algorithm (SSA)-generated datasets.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-08-01 Epub Date: 2022-08-08 DOI:10.1142/S0219720022500184
Siddhartha Kundu
{"title":"TemporalGSSA: A numerically robust R-wrapper to facilitate computation of a metabolite-specific and simulation time-dependent trajectory from stochastic simulation algorithm (SSA)-generated datasets.","authors":"Siddhartha Kundu","doi":"10.1142/S0219720022500184","DOIUrl":null,"url":null,"abstract":"<p><p>Whilst data on biochemical networks has increased several-fold, our comprehension of the underlying molecular biology is incomplete and inadequate. Simulation studies permit data collation from disparate time points and the imputed trajectories can provide valuable insights into the molecular biology of complex biochemical systems. Although, stochastic simulations are accurate, each run is an independent event and the data that is generated cannot be directly compared even with identical simulation times. This lack of robustness will preclude a biologically meaningful result for the metabolite(s) of concern and is a significant limitation of this approach. \"TemporalGSSA\" or temporal Gillespie Stochastic Simulation Algorithm is an R-wrapper which will collate and partition SSA-generated datasets with identical simulation times (trials) into finite sets of linear models (technical replicates). Each such model (time step of a single run, absolute number of molecules for a metabolite) computes several coefficients (slope, intercept, etc.). These coefficients are averaged (mean slope, mean intercept) across all trials of a technical replicate and along with an imputed time step (mean, median, random) is incorporated into a linear regression equation. The solution to this equation is the number of molecules of a metabolite which is used to compute the molar concentration of the metabolite per technical replicate. The summarized (mean, standard deviation) data of this vector of technical replicates is the outcome or numerical estimate of the molar concentration of a metabolite and is dependent on the duration of the simulation. If the SSA-generated dataset comprises runs with differing simulation times, \"TemporalGSSA\" can compute the time-dependent trajectory of a metabolite provided the trials-per technical replicate constraint is complied with. The algorithms deployed by \"TemporalGSSA\" are rigorous, have a sound theoretical basis and have contributed meaningfully to our comprehension of the mechanism(s) that drive complex biochemical systems. \"TemporalGSSA\", is robust, freely accessible and easy to use with several readily testable examples.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500184","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/8 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Whilst data on biochemical networks has increased several-fold, our comprehension of the underlying molecular biology is incomplete and inadequate. Simulation studies permit data collation from disparate time points and the imputed trajectories can provide valuable insights into the molecular biology of complex biochemical systems. Although, stochastic simulations are accurate, each run is an independent event and the data that is generated cannot be directly compared even with identical simulation times. This lack of robustness will preclude a biologically meaningful result for the metabolite(s) of concern and is a significant limitation of this approach. "TemporalGSSA" or temporal Gillespie Stochastic Simulation Algorithm is an R-wrapper which will collate and partition SSA-generated datasets with identical simulation times (trials) into finite sets of linear models (technical replicates). Each such model (time step of a single run, absolute number of molecules for a metabolite) computes several coefficients (slope, intercept, etc.). These coefficients are averaged (mean slope, mean intercept) across all trials of a technical replicate and along with an imputed time step (mean, median, random) is incorporated into a linear regression equation. The solution to this equation is the number of molecules of a metabolite which is used to compute the molar concentration of the metabolite per technical replicate. The summarized (mean, standard deviation) data of this vector of technical replicates is the outcome or numerical estimate of the molar concentration of a metabolite and is dependent on the duration of the simulation. If the SSA-generated dataset comprises runs with differing simulation times, "TemporalGSSA" can compute the time-dependent trajectory of a metabolite provided the trials-per technical replicate constraint is complied with. The algorithms deployed by "TemporalGSSA" are rigorous, have a sound theoretical basis and have contributed meaningfully to our comprehension of the mechanism(s) that drive complex biochemical systems. "TemporalGSSA", is robust, freely accessible and easy to use with several readily testable examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TemporalGSSA:一个数字健壮的r包装器,可以从随机模拟算法(SSA)生成的数据集中方便地计算代谢物特异性和模拟时间相关的轨迹。
虽然生物化学网络的数据增加了几倍,但我们对潜在分子生物学的理解是不完整和不充分的。模拟研究允许从不同的时间点进行数据整理,并且估算的轨迹可以为复杂生化系统的分子生物学提供有价值的见解。虽然随机模拟是准确的,但每次运行都是一个独立的事件,生成的数据即使与相同的模拟时间也不能直接进行比较。这种鲁棒性的缺乏将排除对所关注的代谢物有生物学意义的结果,并且是该方法的一个重要限制。“TemporalGSSA”或时态Gillespie随机模拟算法是一个r包装器,它将整理和划分具有相同模拟时间(试验)的ssa生成的数据集到有限的线性模型集(技术复制)中。每个这样的模型(单次运行的时间步长,代谢物的绝对分子数)计算几个系数(斜率,截距等)。这些系数在技术重复的所有试验中被平均(平均斜率,平均截距),并与输入的时间步长(平均值,中位数,随机)合并到线性回归方程中。这个方程的解是用于计算每个技术重复的代谢物的摩尔浓度的代谢物的分子数。该技术重复载体的汇总(平均值,标准差)数据是代谢物摩尔浓度的结果或数值估计,并取决于模拟的持续时间。如果ssa生成的数据集包含具有不同模拟时间的运行,“TemporalGSSA”可以计算代谢物的时间依赖轨迹,前提是遵守每个技术重复的试验约束。“TemporalGSSA”部署的算法是严格的,具有良好的理论基础,并为我们理解驱动复杂生化系统的机制做出了有意义的贡献。“TemporalGSSA”是一个健壮的、可自由访问的、易于使用的程序,有几个易于测试的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1