The COVID-19 Pandemic and Mental Health Concerns on Twitter in the United States.

Health data science Pub Date : 2022-02-17 eCollection Date: 2022-01-01 DOI:10.34133/2022/9758408
Senqi Zhang, Li Sun, Daiwei Zhang, Pin Li, Yue Liu, Ajay Anand, Zidian Xie, Dongmei Li
{"title":"The COVID-19 Pandemic and Mental Health Concerns on Twitter in the United States.","authors":"Senqi Zhang, Li Sun, Daiwei Zhang, Pin Li, Yue Liu, Ajay Anand, Zidian Xie, Dongmei Li","doi":"10.34133/2022/9758408","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During the COVID-19 pandemic, mental health concerns (such as fear and loneliness) have been actively discussed on social media. We aim to examine mental health discussions on Twitter during the COVID-19 pandemic in the US and infer the demographic composition of Twitter users who had mental health concerns.</p><p><strong>Methods: </strong>COVID-19-related tweets from March 5<sup>th</sup>, 2020, to January 31<sup>st</sup>, 2021, were collected through Twitter streaming API using keywords (i.e., \"corona,\" \"covid19,\" and \"covid\"). By further filtering using keywords (i.e., \"depress,\" \"failure,\" and \"hopeless\"), we extracted mental health-related tweets from the US. Topic modeling using the Latent Dirichlet Allocation model was conducted to monitor users' discussions surrounding mental health concerns. Deep learning algorithms were performed to infer the demographic composition of Twitter users who had mental health concerns during the pandemic.</p><p><strong>Results: </strong>We observed a positive correlation between mental health concerns on Twitter and the COVID-19 pandemic in the US. Topic modeling showed that \"stay-at-home,\" \"death poll,\" and \"politics and policy\" were the most popular topics in COVID-19 mental health tweets. Among Twitter users who had mental health concerns during the pandemic, Males, White, and 30-49 age group people were more likely to express mental health concerns. In addition, Twitter users from the east and west coast had more mental health concerns.</p><p><strong>Conclusions: </strong>The COVID-19 pandemic has a significant impact on mental health concerns on Twitter in the US. Certain groups of people (such as Males and White) were more likely to have mental health concerns during the COVID-19 pandemic.</p>","PeriodicalId":73207,"journal":{"name":"Health data science","volume":" ","pages":"9758408"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629680/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9758408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: During the COVID-19 pandemic, mental health concerns (such as fear and loneliness) have been actively discussed on social media. We aim to examine mental health discussions on Twitter during the COVID-19 pandemic in the US and infer the demographic composition of Twitter users who had mental health concerns.

Methods: COVID-19-related tweets from March 5th, 2020, to January 31st, 2021, were collected through Twitter streaming API using keywords (i.e., "corona," "covid19," and "covid"). By further filtering using keywords (i.e., "depress," "failure," and "hopeless"), we extracted mental health-related tweets from the US. Topic modeling using the Latent Dirichlet Allocation model was conducted to monitor users' discussions surrounding mental health concerns. Deep learning algorithms were performed to infer the demographic composition of Twitter users who had mental health concerns during the pandemic.

Results: We observed a positive correlation between mental health concerns on Twitter and the COVID-19 pandemic in the US. Topic modeling showed that "stay-at-home," "death poll," and "politics and policy" were the most popular topics in COVID-19 mental health tweets. Among Twitter users who had mental health concerns during the pandemic, Males, White, and 30-49 age group people were more likely to express mental health concerns. In addition, Twitter users from the east and west coast had more mental health concerns.

Conclusions: The COVID-19 pandemic has a significant impact on mental health concerns on Twitter in the US. Certain groups of people (such as Males and White) were more likely to have mental health concerns during the COVID-19 pandemic.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COVID-19 大流行与美国 Twitter 上的心理健康问题。
背景:在 COVID-19 大流行期间,人们在社交媒体上积极讨论心理健康问题(如恐惧和孤独)。我们旨在研究美国 COVID-19 大流行期间 Twitter 上的心理健康讨论,并推断出有心理健康问题的 Twitter 用户的人口构成:我们使用关键字(即 "corona"、"covid19 "和 "covid")通过 Twitter 流 API 收集了 2020 年 3 月 5 日至 2021 年 1 月 31 日期间与 COVID-19 相关的推文。通过使用关键词(即 "沮丧"、"失败 "和 "绝望")进一步筛选,我们提取了美国与心理健康相关的推文。我们使用 Latent Dirichlet Allocation 模型进行了主题建模,以监控用户围绕心理健康问题的讨论。我们使用深度学习算法来推断大流行期间有心理健康问题的推特用户的人口构成:我们观察到 Twitter 上的心理健康问题与美国 COVID-19 大流行之间存在正相关。话题建模显示,"足不出户"、"死亡调查 "和 "政治与政策 "是 COVID-19 心理健康推文中最热门的话题。在大流行期间有心理健康问题的推特用户中,男性、白人和 30-49 岁年龄组的人更有可能表达心理健康问题。此外,东西海岸的推特用户有更多的心理健康问题:结论:COVID-19 大流行对美国 Twitter 上的心理健康问题有重大影响。某些人群(如男性和白人)在 COVID-19 大流行期间更容易产生心理健康问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
期刊最新文献
Multi-Modal CLIP-Informed Protein Editing. The Burden of Type 2 Diabetes in Adolescents and Young Adults in China: A Secondary Analysis from the Global Burden of Disease Study 2021. Federated Learning in Healthcare: A Benchmark Comparison of Engineering and Statistical Approaches for Structured Data Analysis. Robust Meta-Model for Predicting the Likelihood of Receiving Blood Transfusion in Non-traumatic Intensive Care Unit Patients. Survival Disparities among Cancer Patients Based on Mobility Patterns: A Population-Based Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1