John A Ruder, Katherine Li, Paul E Matuszewski, J Stewart Buck, Didier Dréau, Chandra Williams, Bailey V Fearing, Rachel B Seymour, Joseph R Hsu
{"title":"Promoting Bone Formation and Healing in Segmental Defects Through Ectopic Induced Membrane.","authors":"John A Ruder, Katherine Li, Paul E Matuszewski, J Stewart Buck, Didier Dréau, Chandra Williams, Bailey V Fearing, Rachel B Seymour, Joseph R Hsu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to determine whether addition of an in vivo ectopic induced membrane (EM) to the Masquelet Technique enhanced angiogenesis and bone formation in a segmental defect. After generating and stabilizing a diaphyseal femur defect, 10 rats received a polymethylmethacrylate (PMMA) spacer within the defect (control); 10 received another PMMA spacer implanted subcutaneously (EM). We removed the spacers and added autograft; the excised EM was added to their autograft (EM group). Post-mortem x-rays assessed bone formation and bridging. Osteogenesis in the proximal defect was significantly more uniform (p < 0.01), and there was greater amount of bone remodeling distally in the EM group (p < 0.05). There was no difference in bone formation (p = 0.19) but greater degrees of bridging in the EM group (2.20 vs. 1.20, p = 0.09). The EM resulted in more homogeneous proximal osteogenesis and increased bone remodeling distally. These findings could lead to more consistent and predictable bone healing. (Journal of Surgical Orthopaedic Advances 31(3):161-165, 2022).</p>","PeriodicalId":17143,"journal":{"name":"Journal of surgical orthopaedic advances","volume":"31 3","pages":"161-165"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of surgical orthopaedic advances","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to determine whether addition of an in vivo ectopic induced membrane (EM) to the Masquelet Technique enhanced angiogenesis and bone formation in a segmental defect. After generating and stabilizing a diaphyseal femur defect, 10 rats received a polymethylmethacrylate (PMMA) spacer within the defect (control); 10 received another PMMA spacer implanted subcutaneously (EM). We removed the spacers and added autograft; the excised EM was added to their autograft (EM group). Post-mortem x-rays assessed bone formation and bridging. Osteogenesis in the proximal defect was significantly more uniform (p < 0.01), and there was greater amount of bone remodeling distally in the EM group (p < 0.05). There was no difference in bone formation (p = 0.19) but greater degrees of bridging in the EM group (2.20 vs. 1.20, p = 0.09). The EM resulted in more homogeneous proximal osteogenesis and increased bone remodeling distally. These findings could lead to more consistent and predictable bone healing. (Journal of Surgical Orthopaedic Advances 31(3):161-165, 2022).