Deep ensemble learning for automatic medicinal leaf identification.

Silky Sachar, Anuj Kumar
{"title":"Deep ensemble learning for automatic medicinal leaf identification.","authors":"Silky Sachar,&nbsp;Anuj Kumar","doi":"10.1007/s41870-022-01055-z","DOIUrl":null,"url":null,"abstract":"<p><p>The therapeutic nature of medicinal plants and their ability to heal many diseases raises the need for their automatic identification. Different parts of plants that help in their identification include root, fruit, bark, stem but leaf images have been widely used as they are an abundant source of information and are also easily available. This work explores the branch of Artificial Intelligence, called deep learning, and proposes an Ensemble learning approach to rapidly detect medicinal plants using the leaf image. The medicinal leaf dataset consists of 30 classes. Transfer learning approach was used to initialize the parameters and pre-train Neural networks namely MobileNetV2, InceptionV3, and ResNet50. These component models were used to extract features from the input images and the softmax layer connected to the Dense Layer was used as the classifier to train the models on the concerned dataset. The obtained accuracies were validated using threefold and fivefold cross-validation. The Ensemble Deep Learning- Automatic Medicinal Leaf Identification (EDL-AMLI) classifier based on the weighted average of the component model outputs was used as the final classifier. It was observed that the EDL-AMLI outperformed the state-of-the-art pre-trained models such as MobileNetV2, InceptionV3, and ResNet50 by achieving 99.66% accuracy on the test set and average accuracy of 99.9% using threefold and fivefold cross validation.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9373896/pdf/","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-022-01055-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The therapeutic nature of medicinal plants and their ability to heal many diseases raises the need for their automatic identification. Different parts of plants that help in their identification include root, fruit, bark, stem but leaf images have been widely used as they are an abundant source of information and are also easily available. This work explores the branch of Artificial Intelligence, called deep learning, and proposes an Ensemble learning approach to rapidly detect medicinal plants using the leaf image. The medicinal leaf dataset consists of 30 classes. Transfer learning approach was used to initialize the parameters and pre-train Neural networks namely MobileNetV2, InceptionV3, and ResNet50. These component models were used to extract features from the input images and the softmax layer connected to the Dense Layer was used as the classifier to train the models on the concerned dataset. The obtained accuracies were validated using threefold and fivefold cross-validation. The Ensemble Deep Learning- Automatic Medicinal Leaf Identification (EDL-AMLI) classifier based on the weighted average of the component model outputs was used as the final classifier. It was observed that the EDL-AMLI outperformed the state-of-the-art pre-trained models such as MobileNetV2, InceptionV3, and ResNet50 by achieving 99.66% accuracy on the test set and average accuracy of 99.9% using threefold and fivefold cross validation.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度集成学习的药用叶片自动识别。
药用植物的治疗性质及其治疗许多疾病的能力提出了对其自动识别的需要。植物的不同部分包括根,果实,树皮,茎,但叶子的图像已被广泛使用,因为它们是丰富的信息来源,也很容易获得。这项工作探索了人工智能的一个分支,称为深度学习,并提出了一种使用叶子图像快速检测药用植物的集成学习方法。药用叶子数据集由30个类组成。采用迁移学习方法对MobileNetV2、InceptionV3和ResNet50神经网络进行参数初始化和预训练。使用这些组件模型从输入图像中提取特征,并使用连接到Dense layer的softmax层作为分类器在相关数据集上训练模型。采用三重交叉验证和五重交叉验证验证了所得结果的准确性。采用基于组件模型输出加权平均的集成深度学习-自动药用叶子识别(EDL-AMLI)分类器作为最终分类器。EDL-AMLI优于最先进的预训练模型,如MobileNetV2, InceptionV3和ResNet50,在测试集上达到99.66%的准确率,使用三倍和五倍交叉验证的平均准确率达到99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Convolutional neural network based children recognition system using contactless fingerprints. On utilizing modified TOPSIS with R-norm q-rung picture fuzzy information measure green supplier selection. Adoption of machine learning algorithm for predicting the length of stay of patients (construction workers) during COVID pandemic. Adoption and sustainability of bitcoin and the blockchain technology in Nigeria. Debunking multi-lingual social media posts using deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1