Junwei Luo , Lingyi Liu , Wenbo Xu , Qilin Yin , Cong Lin , Hongmei Liu , Wei Lu
{"title":"Stereo super-resolution images detection based on multi-scale feature extraction and hierarchical feature fusion","authors":"Junwei Luo , Lingyi Liu , Wenbo Xu , Qilin Yin , Cong Lin , Hongmei Liu , Wei Lu","doi":"10.1016/j.gep.2022.119266","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, with most mobile phones coming with dual cameras, stereo image super-resolution is becoming increasingly popular in phones and other modern acquisition devices, leading stereo super-resolution images spread widely on the Internet. However, current image forensics methods are carried out in monocular images, and high false positive rate appears when detecting stereo super-resolution images by these methods. Therefore, it is important to develop stereo super-resolution image detection method. In this paper, a convolutional neural network with multi-scale feature extraction and hierarchical feature fusion is proposed to detect the stereo super-resolution images. Multi-atrous convolutions are employed to extract multi-scale features and be adapt for varying stereo super-resolution images, and hierarchical feature fusion further improve the performance and robustness of the model. Experimental results demonstrate that the proposed network can detect stereo super-resolution images effectively and achieve strong generalization and robustness. To the best of our knowledge, it is the first attempt to investigate the performance of current forensics methods when tested under stereo super-resolution images, and represent the first study of stereo super-resolution images detection. We believe that it can raise the awareness about the security of stereo super-resolution images.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"45 ","pages":"Article 119266"},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000369","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, with most mobile phones coming with dual cameras, stereo image super-resolution is becoming increasingly popular in phones and other modern acquisition devices, leading stereo super-resolution images spread widely on the Internet. However, current image forensics methods are carried out in monocular images, and high false positive rate appears when detecting stereo super-resolution images by these methods. Therefore, it is important to develop stereo super-resolution image detection method. In this paper, a convolutional neural network with multi-scale feature extraction and hierarchical feature fusion is proposed to detect the stereo super-resolution images. Multi-atrous convolutions are employed to extract multi-scale features and be adapt for varying stereo super-resolution images, and hierarchical feature fusion further improve the performance and robustness of the model. Experimental results demonstrate that the proposed network can detect stereo super-resolution images effectively and achieve strong generalization and robustness. To the best of our knowledge, it is the first attempt to investigate the performance of current forensics methods when tested under stereo super-resolution images, and represent the first study of stereo super-resolution images detection. We believe that it can raise the awareness about the security of stereo super-resolution images.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation