{"title":"Toward bioproduction of oxo chemicals from C<sub>1</sub> feedstocks using isobutyraldehyde as an example.","authors":"Liwei Guo, Lichao Sun, Yi-Xin Huo","doi":"10.1186/s13068-022-02178-y","DOIUrl":null,"url":null,"abstract":"<p><p>Oxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon-neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C<sub>1</sub> feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C<sub>1</sub>-based biomanufacturing. Specifically, perspectives and scenarios toward carbon- and nitrogen-neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C<sub>1</sub> feedstocks.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":" ","pages":"80"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361566/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-022-02178-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Oxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon-neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C1 feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C1-based biomanufacturing. Specifically, perspectives and scenarios toward carbon- and nitrogen-neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C1 feedstocks.