{"title":"Aroma determination in alcoholic beverages: Green MS-based sample preparation approaches","authors":"Maurizio Piergiovanni, Fabio Gosetti, Priscilla Rocío-Bautista, Veronica Termopoli","doi":"10.1002/mas.21802","DOIUrl":null,"url":null,"abstract":"<p>Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"660-682"},"PeriodicalIF":6.9000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mas.21802","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Aroma determination in alcoholic beverages has become a hot research topic due to the ongoing effort to obtain quality products, especially in a globalized market. Consumer satisfaction is mainly achieved by balancing several aroma compounds, which are mixtures of numerous volatile molecules enclosed in challenging matrices. Thus, sample preparation strategies for quality control and product development are required. They involve several steps including copious amounts of hazardous solvents or time-consuming procedures. This is bucking the trend of the ever-increasing pressure to reduce the environmental impact of analytical chemistry processes. Hence, the evolution of sample preparation procedures has directed towards miniaturized techniques to decrease or avoid the use of hazardous solvents and integrating sampling, extraction, and enrichment of the targeted analytes in fewer steps. Mass spectrometry coupled to gas or liquid chromatography is particularly well suited to address the complexity of these matrices. This review surveys advancements of green miniaturized techniques coupled to mass spectrometry applied on all categories of odor-active molecules in the most consumed alcoholic beverages: beer, wine, and spirits. The targeted literature consider progresses over the past 20 years.
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.