Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Topics in Current Chemistry Pub Date : 2022-08-10 DOI:10.1007/s41061-022-00389-3
Byung Hak Jhun, Dayoon Song, Soo Young Park, Youngmin You
{"title":"Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing","authors":"Byung Hak Jhun,&nbsp;Dayoon Song,&nbsp;Soo Young Park,&nbsp;Youngmin You","doi":"10.1007/s41061-022-00389-3","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO<sub>2</sub>, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.</p></div>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"380 5","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-022-00389-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO2, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物标记和生物传感的磷光Ir(III)配合物
环金属化Ir(III)配合物在室温下表现出强烈的磷光发射,其寿命为亚微秒到几微秒。它们的合成多功能性使其能够广泛控制物理性质,如电荷和亲脂性以及发射颜色。这些有利的性质促使Ir(III)配合物在发光生物成像中的应用。本文综述了近年来基于Ir(III)配合物的磷光生物标签和传感器的研究进展。本文首先简要介绍了环金属化Ir(III)配合物的基本合成原理和光物理过程。重点是说明Ir(III)配合物的广泛成像效用。总结了照亮胞内细胞器(包括线粒体、溶酶体和细胞膜)的磷光标签。还介绍了能够可视化肿瘤球体和寄生虫的Ir(III)配合物。环金属化配体的简单化学修饰使Ir(III)配合物具有较强的传感能力。温度、pH、CO2、金属离子、阴离子、生物硫、活性氧、多肽和粘度传感器最近被添加到分子成像工具中。这种多样的用途证明了磷光Ir(III)配合物在生物成像应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Topics in Current Chemistry
Topics in Current Chemistry Chemistry-General Chemistry
CiteScore
13.70
自引率
1.20%
发文量
48
期刊介绍: Topics in Current Chemistry is a journal that presents critical reviews of present and future trends in modern chemical research. It covers all areas of chemical science, including interactions with related disciplines like biology, medicine, physics, and materials science. The articles in this journal are organized into thematic collections, offering a comprehensive perspective on emerging research to non-specialist readers in academia or industry. Each review article focuses on one aspect of the topic and provides a critical survey, placing it in the context of the collection. Selected examples highlight significant developments from the past 5 to 10 years. Instead of providing an exhaustive summary or extensive data, the articles concentrate on methodological thinking. This approach allows non-specialist readers to understand the information fully and presents the potential prospects for future developments.
期刊最新文献
Structure-Based Drug Design of RdRp Inhibitors against SARS-CoV-2 The Intramolecular Povarov Tool in the Construction of Fused Nitrogen-Containing Heterocycles Photothermal Catalytic CO2 Conversion: Beyond Catalysis and Photocatalysis Multicomponent Reactions Using C,N-Binucleophilic Nature of Aminopyrazoles: Construction of Pyrazole-Fused Heterocycles Laser-Induced Transfer of Functional Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1