Integration of Artificial Intelligence and CRISPR/Cas9 System for Vaccine Design.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Cancer Informatics Pub Date : 2022-11-26 eCollection Date: 2022-01-01 DOI:10.1177/11769351221140102
Elham Maserat
{"title":"Integration of Artificial Intelligence and CRISPR/Cas9 System for Vaccine Design.","authors":"Elham Maserat","doi":"10.1177/11769351221140102","DOIUrl":null,"url":null,"abstract":"<p><p>The CRISPR/Cas9 system offers a new approach to genome editing and cancer treatment. This approach is able to detect drug targets and genomic analysis of cancer. The use of artificial intelligence (AI) capacity to edit genomes through CRISPR/Cas9 enables modification of gene mutations, molecular simulation. AI approaches include knowledge discovery approaches, antigen and epitope prediction approaches, and agent based-model approaches. These methods in combination with CRISPR/Cas9 can be used in vaccine design.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/18/8c/10.1177_11769351221140102.PMC9703516.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351221140102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The CRISPR/Cas9 system offers a new approach to genome editing and cancer treatment. This approach is able to detect drug targets and genomic analysis of cancer. The use of artificial intelligence (AI) capacity to edit genomes through CRISPR/Cas9 enables modification of gene mutations, molecular simulation. AI approaches include knowledge discovery approaches, antigen and epitope prediction approaches, and agent based-model approaches. These methods in combination with CRISPR/Cas9 can be used in vaccine design.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能与CRISPR/Cas9系统在疫苗设计中的集成
CRISPR/Cas9系统为基因组编辑和癌症治疗提供了一种新方法。这种方法能够检测药物靶点和癌症的基因组分析。利用人工智能(AI)能力编辑基因组,通过CRISPR/Cas9实现基因突变修饰、分子模拟。人工智能方法包括知识发现方法、抗原和表位预测方法以及基于agent的模型方法。这些方法结合CRISPR/Cas9可用于疫苗设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Informatics
Cancer Informatics Medicine-Oncology
CiteScore
3.00
自引率
5.00%
发文量
30
审稿时长
8 weeks
期刊介绍: The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.
期刊最新文献
Understanding the Biological Basis of Polygenic Risk Scores and Disparities in Prostate Cancer: A Comprehensive Genomic Analysis. Machine Learning for Dynamic Prognostication of Patients With Hepatocellular Carcinoma Using Time-Series Data: Survival Path Versus Dynamic-DeepHit HCC Model. Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review. Prediction of Treatment Recommendations Via Ensemble Machine Learning Algorithms for Non-Small Cell Lung Cancer Patients in Personalized Medicine. Multicategory Survival Outcomes Classification via Overlapping Group Screening Process Based on Multinomial Logistic Regression Model With Application to TCGA Transcriptomic Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1