{"title":"Long-term abnormalities in brain glucose/energy metabolism after inhibition of the neuronal insulin receptor: implication of tau-protein.","authors":"S Hoyer, H Lannert","doi":"10.1007/978-3-211-73574-9_25","DOIUrl":null,"url":null,"abstract":"<p><p>The triplicate intracerebroventricular (icv) application of the diabetogenic compound streptozotocin (STZ) in low dosage was used in 1-year-old male Wistar rats to induce a damage of the neuronal insulin signal transduction (IST) system and to investigate the activities of hexokinase (HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GDH), pyruvate kinase (PK), lactate dehydrogenase (LDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in frontoparietotemporal brain cortex (ct) and hippocampus (h) 9 weeks after damage. In parallel, the concentrations of adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP) and creatine phosphate (CrP) were determined. We found reductions of HK to 53% (ct) and 60% (h) of control, PFK to 63/64% (ct/h); GDH to 56/61% (ct/h), PFK to 57/59% (ct/h), alpha-KGDH to 37/35% (ct/h) and an increase of LDH to 300/240% (ct/h). ATP decreased to 82/87% (ct/h) of control, GTP to 69/81% (ct/h), CrP to 82/81% (ct/h), approximately P to 82/82% (ct/h), whereas ADP increased to 189/154% (ct/h). The fall of the activities of the glycolytic enzymes HK, PFK, GDH and PK was found to be more marked after 9 weeks of damage when compared with 3- and 6-week damage whereas the diminution in the concentration of energy rich compound was stably reduced by between 20 and 10% relative to control. The abnormalities in glucose/energy metabolism were discussed in relation to tau-protein mismetabolism of experimental animals, and of sporadic AD.</p>","PeriodicalId":16395,"journal":{"name":"Journal of Neural Transmission-supplement","volume":" 72","pages":"195-202"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-211-73574-9_25","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neural Transmission-supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-211-73574-9_25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62
Abstract
The triplicate intracerebroventricular (icv) application of the diabetogenic compound streptozotocin (STZ) in low dosage was used in 1-year-old male Wistar rats to induce a damage of the neuronal insulin signal transduction (IST) system and to investigate the activities of hexokinase (HK), phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GDH), pyruvate kinase (PK), lactate dehydrogenase (LDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH) in frontoparietotemporal brain cortex (ct) and hippocampus (h) 9 weeks after damage. In parallel, the concentrations of adenosine triphosphate (ATP), adenosine diphosphate (ADP), guanosine triphosphate (GTP) and creatine phosphate (CrP) were determined. We found reductions of HK to 53% (ct) and 60% (h) of control, PFK to 63/64% (ct/h); GDH to 56/61% (ct/h), PFK to 57/59% (ct/h), alpha-KGDH to 37/35% (ct/h) and an increase of LDH to 300/240% (ct/h). ATP decreased to 82/87% (ct/h) of control, GTP to 69/81% (ct/h), CrP to 82/81% (ct/h), approximately P to 82/82% (ct/h), whereas ADP increased to 189/154% (ct/h). The fall of the activities of the glycolytic enzymes HK, PFK, GDH and PK was found to be more marked after 9 weeks of damage when compared with 3- and 6-week damage whereas the diminution in the concentration of energy rich compound was stably reduced by between 20 and 10% relative to control. The abnormalities in glucose/energy metabolism were discussed in relation to tau-protein mismetabolism of experimental animals, and of sporadic AD.